首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Integrin-linked kinase (ILK) is a scaffolding protein with central roles in tissue development and homeostasis. Much debate has focused on whether ILK is a bona fide or a pseudo- kinase. This aspect of ILK function has been complicated by the large volumes of conflicting observations obtained from a wide variety of experimental approaches, from in vitro models, to analyses in invertebrates and in mammals. Key findings in support or against the notion that ILK is catalytically active are summarized. The importance of ILK as an adaptor protein is well established, and defining its role as a signaling hub will be the next key step to understand its distinct biological roles across tissues and species.  相似文献   

2.
Inflammation and pro-hypertrophic signaling are important for development and progression of myocardial hypertrophy (LVH) and chronic heart failure (CHF). Here we investigated the relevance of integrin-linked kinase (ILK) for chemokine receptor CXCR4- and angiotensin II type 1-triggered signaling and its regulation and role in cardiac remodeling.Using ELISA, real-time-PCR, and Western blotting, the present study demonstrates that SDF-1 and its receptor CXCR4 are up-regulated in plasma and left ventricles, respectively, in mouse models of cardiac hypertrophy (transaortic constriction, transgenic cardiac-specific overexpression of rac1) and in human CHF in association with increased cardiac ILK-expression. In isolated cardiomyocytes, ILK is activated by CXCR4-ligation and necessary for SDF-1-triggered activation of rac1, NAD(P)H oxidase, and release of reactive oxygen species. Importantly, the pro-hypertrophic peptide angiotensin II induces ILK-activation dependent on rac1 in cardiomyocytes, where ILK is necessary for angiotensin II-mediated stimulation of hypertrophy genes and protein synthesis.We conclude that in both SDF-1- and angiotensin II-triggered signaling, ILK is a central mediator of rac1-induced oxidative stress and myocardial hypertrophy.  相似文献   

3.
Transforming growth factor-beta1 (TGF-beta1) is a potent growth inhibitor and apoptosis inducer for most normal cells. However, tumor cells are commonly nevertheless sensitive to the tumor-suppressing effects of TGF-beta1. In this paper, we focus on the effects of TGF-beta1 on two important anti-apoptotic protein kinases, protein kinase B (PKB), and focal adhesion kinase (FAK), in SMMC-7721 cells. We found that PKB-Ser-473 phosphorylation was apparently up-regulated by TGF-beta1. In the meantime, PKB-Thr-308 phosphorylation was slightly up-regulated by TGF-beta1. TGF-beta1 could also enhance FAK-Tyr phosphorylation. We observed that integrin-linked kinase (ILK) was also up-regulated by TGF-beta1 in good accordance with PKB-Ser-473 phosphorylation. We first found that TGF-beta1 could stimulate PKB-Ser-473 phosphorylation possibly via up-regulating ILK expression. Furthermore, we also failed to detect PKB-Ser-473 and FAK-Tyr phosphorylation with various concentrations of TGF-beta1 treatment when cells were kept in suspension. The above results indicate that PKB-Ser-473 and FAK-Tyr phosphorylation stimulated by TGF-beta1 are both dependent on cell adhesion.  相似文献   

4.
Abstract

Integrin linked kinase (ILK) is a Ser/Thr kinase, which regulates various integrin mediated signaling pathways, and is involved in cell adhesion, migration and differentiation. Alteration in the ILK is responsible for abnormal functioning of the cell system, which may lead to the cancer progression and metastasis. Caffeic acid (CA) and simvastatin are used as antioxidant and possess anticancer properties. Thus, inhibiting the kinase activity of ILK by CA and simvastatin may be implicated in the cancer therapy. In this study, we have performed molecular docking followed by 100?ns MD simulations to understand the interaction mechanism of ILK protein with the CA and simvastatin. Average potential energy was found to be highest in case of ILK–CA complex (?770,949?kJ/mol). Binding free energy was found to be higher in case of simvastatin than CA. Our results indicate that simvastatin binds more effectively to the active pocket of ILK. We further performed MTT assay to understand its anticancer potential. Simvastatin shows the IC50 values for HepG2 and MCF-7 as 19.18?±?0.12 and 13.84?±?0.22?µM, respectively. However, the IC50 value of CA on HepG2 and MCF-7 was reported as 175.50?±?1.44 and 144.90?±?1.53?µM, respectively. Our study provides a deeper insight into the binding mechanism of simvastatin and CA to ILK, which further opens a promising channel for their implications in cancer therapy.  相似文献   

5.
Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.  相似文献   

6.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

7.
How intracellular cytoskeletal and signaling proteins connect and communicate with the extracellular matrix (ECM) is a fundamental question in cell biology. Recent biochemical, cell biological, and genetic studies have revealed important roles of cytoplasmic integrin-linked kinase (ILK) and its interactive proteins in these processes. Cell adhesion to ECM is an important process that controls cell shape change, migration, proliferation, survival, and differentiation. Upon adhesion to ECM, integrins and a selective group of cytoskeletal and signaling proteins are recruited to cell matrix contact sites where they link the actin cytoskeleton to the ECM and mediate signal transduction between the intracellular and extracellular compartments. In this review, we discuss the molecular activities and cellular functions of ILK, a protein that is emerging as a key component of the cell-ECM adhesion structures.  相似文献   

8.
Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.  相似文献   

9.
We have recently found that the glutathione-S-transferase -isozyme (GST-), a cellular detoxification enzyme, potently and selectively inhibits activation of jun protein by its upstream kinase, jun kinase (JNK). This newly identified regulatory activity of GST- is strongly inhibited by a group of agents that inhibit its enzymatic activity. Since loss of enzymatic activity in general does not correlate with loss of regulatory activity, it is likely that inhibitor binding induces changes in the structure of one or more domains of GST that block its interaction with JNK. To identify regions of GST that change conformation on the binding of inhibitors, we have performed molecular dynamics calculations on GST- to compute its average structure in the presence and absence of the inhibitor, glutathione sulfonate. Superposition of the two average structures reveals that several regions change local structure depending upon whether the inhibitor is bound or not bound. Two of these regions, residues 36–50 and 194–201, are highly exposed. We have synthesized peptides corresponding to these two segments and find that the 194–201 sequence strongly inhibits the ability of GST- to block the in vitro phosphorylation of jun by JNK. These results suggest that this region of GST- is critical to its functioning as a newly discovered regulator of signal transduction.  相似文献   

10.
The nonreceptor tyrosine kinase c-Src is activated in most invasive cancers. Activated c-Src binds to FAK in the focal adhesion complex, resulting in the activation of the c-Src/FAK signaling cascade, which regulates cytoskeletal functions. However, the mechanisms by which c-Src/FAK signaling is regulated during conditions of anchorage-independent growth, a hallmark of tumor progression, are not clearly known. Here, an in vivo approach to measure c-Src activity was studied using phospho-specific antibodies against phosphorylated Y418 of c-Src (Src[pY418]), an autophosphorylation site of c-Src, and phosphorylated Y577 of FAK (FAK[pY577]), a known substrate of c-Src. Using genetic and pharmacological approaches to modulate c-Src activity, we showed that the levels of Src[pY418] and FAK[pY577], and the formation of a c-Src/FAK[pY577] complex correlated with the activation state of c-Src in adherent cells. Interestingly, both the in vivo level of Src[pY418] and in vitro c-Src kinase activity were increased in carcinoma cells following disruption of Ca(2+)-dependent cell-matrix adhesion. In contrast, the level of FAK[pY577] and its association with c-Src were reduced in suspended cells. The amount of FAK[pY577] in suspended cells was recovered following attachment of rounded cells to fibronectin-coated polystyrene beads, indicating that cell spreading was not required for phosphorylation of FAK. Moreover, cells expressing activated c-Src showed sustained Src[Y418] phosphorylation, but required Ca(2+)-dependent cell adhesion for phosphorylation of FAK[Y577] and association of c-Src with FAK[pY577]. These findings indicate an important role of integrin-based cell-matrix adhesion in regulating c-Src/FAK signaling under decreased anchorage conditions.  相似文献   

11.
Aim: Typical features of human osteosarcoma are highly invasive and migratory capacities. Our study aimed to investigate the roles of glycogen synthase kinase 3β (GSK3β) in human osteosarcoma metastasis.Methods: GSK3β expressions in clinical osteosarcoma tissues with or without metastasis were examined by immunohistochemical staining. The expressions of GSK3β, p-GSK3βSer9, and p-GSK3βTyr216 in human osteoblast cells (hFOB1.19) and human osteosarcoma cells (MG63, SaOS-2, and U2-OS) were detected by Western blotting. The GSK3β activity was measured by non-radio isotopic in vitro kinase assay. Migration and invasion abilities of MG-63 cells treated with small-molecular GSK3β inhibitors were respectively examined by monolayer-based wound-healing assay and transwell assay. The mRNA expressions of GSK3β, matrix metalloproteinase-2 (MMP-2), MMP-9, phosphatase with tensin homology (PTEN), and focal adhesion kinase (FAK) were detected after siRNA transfection for 72 h. Meanwhile, protein expressions of GSK3β, FAK, p-FAKY397, PTEN, MMP-2, and MMP-9 were measured by Western blotting.Results: Clinical osteosarcoma tissues with metastasis showed higher GSK3β expressions. MG63 and U2-OS cells that were easy to occur metastasis showed significantly higher expressions and activities of GSK3β than SaOS-2 cells. Inhibition of GSK3β with small-molecular GSK3β inhibitors in MG63 cells significantly attenuated cell migration and invasion. These effects were associated with reduced expressions of MMP-2 and MMP-9. Moreover, increased PTEN and decreased p-FAKY397 expressions were observed following GSK3β knockdown by siRNA transfection. Conclusion: GSK3β might promote osteosarcoma invasion and migration via pathways associated with PTEN and phosphorylation of FAK.  相似文献   

12.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

13.
Adaptor proteins, composed of two or more protein-protein interacting modules without enzymatic activity, regulate various cellular functions. Vinexin, CAP/ponsin, and ArgBP2 constitute a novel adaptor protein family. They have a novel conserved region homologous to the active peptide sorbin, as well as three SH3 (src homology 3) domains. A number of proteins binding to this adaptor family have been identified. There is accumulating evidence that this protein family regulates cell adhesion, cytoskeletal organization, and growth factor signaling. This review will summarize the structure and the function of proteins in this family.  相似文献   

14.
The ternary complex of Escherichia coli adenylate kinase (ECAK) with its substrates adenosine monophosphate (AMP) and Mg-ATP, which catalyzes the reversible transfer of a phosphoryl group between adenosine triphosphate (ATP) and AMP, was studied using molecular dynamics. The starting structure for the simulation was assembled from the crystal structures of ECAK complexed with the bisubstrate analog diadenosine pentaphosphate (AP(5)A) and of Bacillus stearothermophilus adenylate kinase complexed with AP(5)A, Mg(2+), and 4 coordinated water molecules, and by deleting 1 phosphate group from AP(5)A. The interactions of ECAK residues with the various moieties of ATP and AMP were compared to those inferred from NMR, X-ray crystallography, site-directed mutagenesis, and enzyme kinetic studies. The simulation supports the hypothesis that hydrogen bonds between AMP's adenine and the protein are at the origin of the high nucleoside monophosphate (NMP) specificity of AK. The ATP adenine and ribose moieties are only loosely bound to the protein, while the ATP phosphates are strongly bound to surrounding residues. The coordination sphere of Mg(2+), consisting of 4 waters and oxygens of the ATP beta- and gamma-phosphates, stays approximately octahedral during the simulation. The important role of the conserved Lys13 in the P loop in stabilizing the active site by bridging the ATP and AMP phosphates is evident. The influence of Mg(2+), of its coordination waters, and of surrounding charged residues in maintaining the geometry and distances of the AMP alpha-phosphate and ATP beta- and gamma-phosphates is sufficient to support an associative reaction mechanism for phosphoryl transfer.  相似文献   

15.
Since protein kinases have been implicated in numerous human diseases, kinase inhibitors have emerged as promising therapeutic agents. Despite this promise, there has been a relative lag in the development of unbiased strategies to validate both inhibitor specificity and the ability to inhibit target activity within living cells. To overcome these limitations, our efforts have been focused on the development of systematic strategies that employ chemical and functional proteomics. We utilized these strategies to evaluate small molecule inhibitors of protein kinase CK2, a constitutively active kinase that has recently emerged as target for anti-cancer therapy in clinical trials. Our chemical proteomics strategies used ATP or CK2 inhibitors immobilized on sepharose beads together with mass spectrometry to capture and identify binding partners from cell extracts. These studies have verified that interactions between CK2 and its inhibitors occur in complex mixtures. However, in the case of CK2 inhibitors related to 4,5,6,7-tetrabromo-1H-benzotriazole (TBB), our work has also revealed off-targets for the inhibitors. To complement these studies, we devised functional proteomics approaches to identify proteins that exhibit decreases in phosphorylation when cells are treated with CK2 inhibitors. To identify and validate those proteins that are direct substrates for CK2, we have also employed mutants of CK2 with decreased inhibitor sensitivity. Overall, our studies have yielded systematic platforms for studying CK2 inhibitors which we believe will foster efforts to define the biological functions of CK2 and to rigorously investigate its potential as a candidate for molecular-targeted therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

16.
We present evidence for differential roles of Rho-kinase and myosin light chain kinase (MLCK) in regulating shape, adhesion, migration, and chemotaxis of human fibrosarcoma HT1080 cells on laminin-coated surfaces. Pharmacological inhibition of Rho-kinase by Y-27632 or inhibition of MLCK by W-7 or ML-7 resulted in significant attenuation of constitutive myosin light chain phosphorylation. Rho-kinase inhibition resulted in sickle-shaped cells featuring long, thin F-actin-rich protrusions. These cells adhered more strongly to laminin and migrated faster. Inhibition of MLCK in contrast resulted in spherical cells and marked impairment of adhesion and migration. Inhibition of myosin II activation with blebbistatin resulted in a morphology similar to that induced by Y-27632 and enhanced migration and adhesion. Cells treated first with blebbistatin and then with ML-7 also rounded up, suggesting that effects of MLCK inhibition on HT1080 cell shape and motility are independent of inhibition of myosin activity.  相似文献   

17.
During development of colon cancer, Protein Kinase Cs (PKCs) are involved in regulation of many genes controlling several cellular mechanisms. Here, we examined the changes in cell adhesion molecules and PKCs for colorectal cancer progression. We identified that PKCs affected expression of EpCAM, claudins, tetraspanins. Treatment with low concentrations of PKC inhibitors resulted in decreased cell viability. In addition, immunoblotting and qRT-PCR analysis showed that apoptosis was inhibited while autophagy was induced by PKC inhibition in colon cancer cells. Furthermore, we observed decreased levels of intracellular Reactive Oxygen Species (ROS), lipid peroxidation and protein carbonyl, confirming the ROS-induced apoptosis. Taken together, our results reveal that PKC signalling modulates not only cell adhesion dynamics but also cell death-related mechanisms.

Abbreviations: PKC: Protein Kinase C; EpCAM: Epithelial cell adhesion molecule; FBS: fetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); CAM: cell adhesion molecule; ROS: reactive oxygen species  相似文献   


18.
Very few selective inhibitors of the zeta-chain associated protein kinase 70 kDa (ZAP70) have been reported despite its importance in autoimmune diseases. Here, to induce a fit of the so-called gatekeeper residue (Met414) and hydrophobic pocket next to it, a potent Janus kinase 2 (JAK2) inhibitor was first docked into the ATP binding site of ZAP70 by structural alignment of the kinase domains. The resulting model of the complex between ZAP70 and the JAK2 inhibitor was then relaxed by an explicit solvent molecular dynamics simulation with restraints on the backbone atoms. High-throughput docking into the induced-fit conformation of ZAP70 generated by molecular dynamics has revealed 10 low-micromolar inhibitors which correspond to six distinct chemotypes. One of these ZAP70 inhibitors has an IC50 of 110 nM for JAK2.  相似文献   

19.
Human head and neck squamous cell carcinoma (HNSCC) cultures were established from cancers of two patients. These cells were used to study if phosphorylation reactions by protein kinase A (PKA) and dephosphorylation reactions by protein phosphatases-1 and -2A (PP-1/2A) regulate tumor motility and adhesion to extracellular matrix components, and if this might be associated with cytoskeletal reorganization. Both cultures were motile and adherent to collagen I, fibronectin, vitronectin and laminin. Motility and adhesiveness was dependent on production of prostaglandin E2 PGE2 and on PKA activation. Blocking PP-1/2A activity with okadaic acid resulted in a PKA-dependent increase in m otility and, in some instances, adhesiveness by the HNSCC cells. The okadaic acid-induced increase in motility and adhesiveness coincided with a reduction in filamentous actin. These data suggest PKA and PP-1/2A have opposing effects in regulating the motility, adherence, and actin polymerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号