首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
If the main effect of long-term exposure of tomato plants to salinity is the accumulation of toxic concentrations of Na+ and Cl in the leaves, then the selection of ‘excluder’ rootstocks should increase tolerance to salinity in grafted tomato plants, independently of the genotype used as the scion. The question addressed in this study is whether shoot genotypes with an ‘excluder’ character are able to increase their salt tolerance when grafted onto rootstocks of the same characteristics. Moneymaker (with excluder character) was grafted onto two root genotypes, Radja and Pera, selected for their very different ability to regulate the transport of saline ions to the shoot over time. Grafting onto either Pera or Radja improved fruit yield compared to the self-grafted plants of Moneymaker (M/M) when the plants were grown at 50 mM NaCl, whereas there was no effect of either rootstock or of grafting per se (M/M) on fruit yield in the absence of or at 25 mM NaCl. The relationship between the salt responses to mid- and long-term depended on the stress level; after 27 d of 150 mM NaCl treatment, both graft combinations enhanced similarly their salt tolerances as did in the long-term experiment. Moreover, the tolerance induced by rootstock was related to the low rates of saline ion accumulation in their leaves. However, the positive effect of rootstock was only observed with rootstock Pera when the grafted plants were grown at 50 mM NaCl (the same salt level used in the long-term experiment) for 35 d. According to the physiological changes induced by rootstock in the leaves, the different salt responses seem to be due to the fact that the osmotic effect predominated on the toxic effect under these last conditions. Consequently, in order to select rootstocks care must be taken in the timing of any selection process: the stress level and length of exposure to salinity must be sufficient for the true differences in salt tolerance for toxicity to be shown. Taken together, these results show the effectiveness of grafting to enhance fruit yield in tomato and provide evidence that the positive effect induced by rootstock is related to the re-establishment of ionic homeostasis.  相似文献   

2.
In this work we present the first study of the behaviour of tobacco plants, under saline conditions, grafted to salinity-resistant rootstocks of tomato cultivars. To test the viability and efficiency of this grafting technique in tobacco plants subjected to salinity, we analyse the production of foliar biomass and different quality parameters in this crop. With this aim, Nicotiana tabacum cv. Sevilla (scion) was grafted to two cultivars of Lycopersicum esculentum (rootstocks): cv. Jaguar (Sevilla/Jaguar) and cv. Brillante (Sevilla/Brillante). Furthermore, as controls, tobacco plants of cv. Sevilla were used grafted to themselves (Sevilla/Sevilla) and non-grafted plants of cv. Sevilla. Plants were grafted by needle graft following the procedure described by Rivero RM, Ruiz JM, Romero L (2002) Role of grafting in horticultural plants, pp 229–254. In the present work, we demonstrate that the graft of tobacco scions with tomato rootstocks is an effective agricultural approach to improve production and quality in tobacco leaves under conditions of saline stress. Our results show that the rootstock of the cv. Brillante best induced salt resistance in tobacco cv. Sevilla, registering the lowest foliar concentrations of Na+ and Cl, the lowest lipid peroxidation and the highest proline and sugar concentrations. Overall, this is reflected in better biomass production of the aerial part of the plant. Finally, it is noteworthy that grafting in tobacco plants to tomato rootstocks essentially eliminates foliar nicotine levels (reduced to 1%). These results are of great importance, as this technique implies a rapid, efficient and natural alternative in increasing tobacco-leaf quality and thus reducing harmful effects of this alkaloid on the health of smokers.  相似文献   

3.
Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of fruit weight and quality under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock ‘Maxifort’ and grown under three levels of elevated soil salinity (EC 3.80 dS m?1, 6.95 dS m?1 and 9.12 dS m?1). Fruit weight reduction of grafted plants was lower (about 20–30%) in comparison with non‐grafted ones. Salt stress at the second salinity level (EC 6.95 dS m?1) induced the highest alteration of examined growth and quality parameters. The total increase of phenols, flavonoids, ascorbate and lycopene content in the fruits of both grafted and non‐grafted plants for both cultivars had a similar trend and intensity, though some inter‐cultivar variation was observed. The possibility of grafting tomato plants to improve salt tolerance without fruit quality loss is discussed.  相似文献   

4.
Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3 ? level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

5.
The aim of the current work was to determine whether grafting could improve salinity tolerance of melon and cucumber, and whether possible induction of tolerance to salt stress was associated with the protection of the photosynthetic apparatus. Two greenhouse experiments were carried out to determine gas exchange, mineral composition, growth and yield of melon (Cucumis melo L. cv. Cyrano) and cucumber (Cucumis sativus L. cv. Akito) plants, either ungrafted or grafted onto the Cucurbita hybrid rootstocks (Cucurbita maxima Duch. × Cucurbita moschata Duch.), ??P360??, and ??PS1313??, respectively. Plants were grown hydroponically and supplied with two nutrient solutions ?? a nonsalinized control and a salinized solution which contained 40 mmol L?1 of NaCl. Salinity induced a smaller decrease in leaf area index (LAI), in grafted-compared to ungrafted plants. Similarly, the P N and g s reduction in NaCl treatment compared to control were significantly lower in grafted plants (34% and 34%, respectively, for melon and 14% and 15.5%, respectively, for cucumber) compared to ungrafted plants (42% and 40%, respectively, for melon and 30% and 21%, respectively, for cucumber). In all grafting combinations, negative correlations were recorded between Na+ and Cl? in the leaf tissue and P N. Grafting reduced concentrations of sodium, but not chloride, in leaves. Under saline conditions a smaller reduction in melon and cucumber shoot biomass dry mass and fruit yield were recorded, with positive correlations between shoot biomass, yield and P N. These results suggest that the use of salt tolerant Cucurbita rootstock can improve melon and cucumber photosynthetic capacity under salt stress and consequently crop performance.  相似文献   

6.
Tolerance of salt stress in potato (Solanum tuberosum L.) increased when the plants were pre-exposed to low concentrations of salt (salt acclimation). This acclimation was accompanied by increased levels of abscisic acid (ABA) in the shoot. To further study the role of roots and shoots in this acclimation process, reciprocal grafts were made between a salt-tolerant (9506) and salt-sensitive ABA(−) mutant and its ABA(+) normal sibling potato genotype. The grafted plants were acclimated with 75 or 100 mM NaCl for 3 weeks and then exposed to 150–180 mM NaCl, depending on the salt tolerance of the rootstock. After 2 weeks of exposure to the salt stress, the acclimated and unacclimated plants were compared for physiologic and morphologic parameters. The response to the salt stress was strongly influenced by the rootstock. The salt-tolerant 9506 rootstock increased the salt tolerance of scions of both the ABA-deficient mutant and its ABA(+) sibling. This salt tolerance induced by the rootstock was primarily modulated by salt acclimation and manifested in the scion via increased plant water content, stem diameter, dry matter accumulation, stomatal conductivity, and osmotic potential, and is associated with a reduction in leaf necrosis. There was also a pronounced scion effect on the rootstock. Using 9506 as a scion significantly increased root fresh and dry weights, stem diameter, and root water content of ABA(−) mutant rootstocks. Specific evidence was found of the role of exogenous ABA in the enhancement of water status in grafted plants under salt stress beyond that of grafting alone. This was verified by more positive stomatal conductivity and upward water flow in ABA-treated grafted and nongrafted plants and the absence of upward water flow in nontreated grafted plants through NMR imaging. Grafting using either salt-tolerant scions or rootstocks with inherently high ABA levels may positively modify subsequent responses of the plant under salt stress.  相似文献   

7.
The rootstock effect on the fruit yield of a grafted tomato variety was genetically analyzed under salinity using as rootstock two populations of F(9) lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (123 lines), and S. cheesmaniae, the C population (100 lines). There were rootstock lines from the two populations (up to 65% in the P population) that raised the fruit yield of the commercial hybrid under saline conditions. It is shown that this salt tolerance rootstock effect is a heritable trait (h (2) near 0.3), governed by at least eight QTLs. The most relevant component was the number of fruits. Thus most detected QTLs correspond to this component. In general, QTL gene effects are medium-sized, with contributions from 8.5 up to 15.9% at most, and the advantageous allele comes from the wild, salt tolerant species. Only two fruit yield QTLs on chromosomes P9 and C11 might correspond to fruit yield QTLs of the non-grafted lines indicating their root system dependence. A fruit yield QTL on chromosome 3 is acting epistatically in both populations. The epistatic interactions found were dominant and they were unveiled using the associated marker as cofactor in the composite interval mapping methodology. Therefore, an efficient and profitable utilization of wild germplasm can be carried out through the improvement of rootstocks that confer salt tolerance in terms of fruit yield to the grafted variety.  相似文献   

8.
Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100?mM NaCl for 22?d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75?mM NaCl for 90?d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.  相似文献   

9.
Cucumber plants were either self-grafted or grafted onto two salt-tolerant pumpkin rootstocks Chaojiquanwang (Cucurbita moschata Duch), and Figleaf Gourd (Cucurbita ficifolia Bouche). Plants were grown hydroponically in 0, 30, 60, or 90 mM NaCl for 16 d in greenhouse. Salinity induced a smaller decrease in plant shoot dry mass, leaf area, net photosynthetic rate, and stomatal conductance in the two rootstock-grafted plants compared to the self-grafted plants. In addition, a significant increase in intercellular CO2 concentration, as well as a significant decrease in the initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase activities were observed only in the self-grafted plants under 90 mM NaCl treatment. These results suggest that the use of salt tolerant rootstock can improve cucumber photosynthetic capacity under salt stress through both stomatal and non-stomatal pathways.  相似文献   

10.
Grafting is regarded as a promising tool to broaden the temperature optimum of elite tomato cultivars. However, suitable low-temperature tolerant tomato rootstocks are not yet available and its breeding is hampered by a lack of variation in low-temperature tolerance within the cultivated tomato. In this study, therefore, the impact of grafting tomato (Solanum lycopersicum Mill. cv. Moneymaker, Sl) onto the rootstock of a cold-tolerant high-altitude accession of a related wild species (Solanum habrochaites LA 1777 Humb. & Bonpl., Sh) was examined at different combinations of optimal (25 °C) and/or suboptimal (15 °C) air/root-zone temperatures (RZT), i.e. 25/25, 25/15, 15/25 and 15/15 °C. Self-grafted tomato plants were used as controls. Both scion/rootstock combinations, Sl/Sl and Sl/Sh, were grown hydroponically and compared for biomass production and partitioning, plant morphology, carbohydrate partitioning and leaf C and N status. Grafting tomato onto Sh increased the relative growth rate of shoots with 26 and 11% at 25/15 and 15/15 °C, respectively. This increase could be attributed to stimulation of the leaf expansion rate. Graft combinations with Sh rootstocks were characterized by higher root mass ratios, particularly at 15 °C RZT. Suboptimal RZT strongly reduced the relative growth rate of Sl roots but not of Sh. This was correlated to differences in inhibition of root elongation. In contrast to tomato grafted onto Sh, leaf total C and total N concentrations increased in self-grafted tomato plants in response to 15 °C RZT. The increase in leaf total C concentration of Sl/Sl graft combinations at 15 °C RZT could be ascribed largely to starch accumulation. This study illustrates that growth of vegetative tomato plants at suboptimal temperature is for a significant part inhibited by its poor root development. Grafting tomato onto a low-temperature rootstock provides an alternative tool to reduce, in part, the grow-limiting effects of suboptimal RZ temperature on the shoot. To improve the low-temperature tolerance of existing commercial tomato rootstocks, S. habrochaites LA 1777 appeared to be a valuable germplasm pool.  相似文献   

11.
We examined the growth, photosynthetic parameters, initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, the relative expression of rbcL, rbcS, and rca gene, and nitrogen metabolism of cucumber (Cucumis sativus L. cv. Jinchun No.2, CS) plants grafted onto figleaf gourd (Cucurbita ficifolia Bouché, CF) and pumpkin (Cucurbita moschata Duch. cv. Chaojiquanwang, CM) rootstocks. Growth inhibition under salt stress (90 mM NaCl) was characterized by the irreversible inhibition of CO2 assimilation in the cucumber plants grafted onto cucumber rootstocks (CS/CS). In contrast, this effect was significantly alleviated by grafting the cucumber plants onto the CF and CM roots (CS/CF, CS/CM). Under NaCl stress, the CS/CF and CS/CM plants exhibited higher photosynthetic activity, higher initial and total Rubisco activity, and higher Rubisco-related gene expression than the CS/CS plants. Salinity resulted in a lesser increase in nitrate content and decrease in free amino acid content in the CS/CF and the CS/CM plants compared with the CS/CS plants. Accordingly, the activity of nitrate reductase, glutamine synthetase, and glutamate synthase decreased significantly, especially in the CS/CS plants. These results suggest that grafting cucumber plants onto salt-tolerant rootstocks enhances Rubisco activity and the expression of Rubisco-related genes by effectively accelerating nitrate transformation into amino acids under NaCl stress, thereby improving the photosynthetic performance of cucumber leaves.  相似文献   

12.
Increasing salt tolerance in the tomato   总被引:9,自引:0,他引:9  
In this paper, a number of strategies to overcome the deleterious effects of salinity on plants will be reviewed; these strategies include using molecular markers and genetic transformation as tools to develop salinity-tolerant genotypes, and some cultural techniques. For more than 12 years, QTL analysis has been attempted in order to understand the genetics of salt tolerance and to deal with component traits in breeding programmes. Despite innovations like better marker systems and improved genetic mapping strategies, the success of marker-assisted selection has been very limited because, in part, of inadequate experimental design. Since salinity is variable in time and space, experimental design must allow the study of genotype x environment interaction. Genetic transformation could become a powerful tool in plant breeding, but the growing knowledge from plant physiology must be integrated with molecular breeding techniques. It has been shown that the expression of several transgenes promotes a higher level of salt tolerance in some species. Despite this promising result, the development of a salt-tolerant cultivar by way of transgenesis has still not been achieved. Future directions in order to overcome the present limitations are proposed. Three cultural techniques have proved useful in tomato to overcome, in part, the effects of salinity: treatment of seedlings with drought or NaCl ameliorates the adaptation of adult plants to salinity; mist applied to tomato plants grown in Mediterranean conditions improves vegetative growth and yield in saline conditions; and grafting tomato cultivars onto appropriate rootstocks could reduce the effects of salinity.  相似文献   

13.
Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F1 cucumber cultivar (Cucumis sativus L.) was grafted onto Affyne (Cucumis sativus L.) and Shintoza A90 (Cucurbitamaxima × C. moschata) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant?1 in non-grafted treatment to 6.149 kg plant?1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.  相似文献   

14.
15.
Potato is an important world crop but its cultivation is relatively limited by its sensitivity to salt-stress. Auto- and hetero-grafting was used to examine the effect of rootstock and abscisic acid (ABA) on expression of the Ca2+-storage protein calreticulin (CR) and salt-stress tolerance in potato. Sibling-selected diploid clones of potato (S. tuberosum) were utilized that are distinguished by differential root Na+ absorption; including type: late-maturing, LM and excluding type, early-maturing, EM under salt treatment; salt-stress sensitivity (S/T, sensitive or tolerant); and abscisic acid production (AD/AN, ABA-deficient or-normal sibling lines). CR expression, osmotic potential (OP) and leaf Ca2+ were measured at the end of a 5 days NaCl stress treatment applied at tuber initiation. Increased CR expression was induced by NaCl stress and associated with salt tolerance in early-maturing tolerant (EMT) and late-maturing tolerant (LMT) clones with higher levels of CR in LMT compared to the EMT clone. Early-maturing sensitive (EMS) clone salt tolerance increased when grafted onto LMT but not onto EMT rootstocks. EMS scions maintained less negative leaf OP when grafted onto LMT rootstocks than grafting onto the EMT rootstock. Exogenous ABA application induced a less negative upper leaf OP in the salt-stress sensitive AD clone but not in the AN clone. AD clones were characterized by low CR levels, which did not increase after stress. However, grafting the AD clone onto LMT increased CR expression in the AD portion of the graft combination. Salt-stress induced CR expression and is positively associated with the presence of ABA and the salt-stress tolerant phenotypes. Both, elevation in CR expression and salt tolerance in the tolerant rootstocks, were translocated to sensitive scions although highest permeation depended on the LM type. Calreticulin expression appears to be involved in ABA-induced salt tolerance and both salt-stress tolerance and CR expression appear to be regulated by the roots.  相似文献   

16.
The effects of salinity and its combination with silicon (Si) were studied in ‘Nova’ mandarin plants grafted on Citrus aurantium L. or Swingle Citrumelo to determine: (1) which combination is more tolerant to salt stress and (2) the impact of Si in limiting the harmful effects of salinity. Six groups of plants were grown in a greenhouse for 120 days and irrigated with: (1) 50 % Hoagland’s solution (Control), (2) 50 % Hoagland’s solution plus 80 mM NaCl (NaCl), and (3) 50 % Hoagland’s solution plus 80 mM NaCl plus 0.5 mM Si (NaCl + Si). Grafted plants exhibited accumulation of Na and Cl in their tissues following exposure to salinity. The ability of S. Citrumelo to retain the toxic ions in the roots in corroboration with the observation that the dry weights (DWs) of S. Citrumelo tissues were not influenced by NaCl treatment indicates that this rootstock is more tolerant to salinity. Silicon supplementation into the saline medium promoted the accumulation of toxic ions, whereas, when compared to NaCl treatment, it increased the DW of S. Citrumelo roots. Mineral concentrations were significantly affected by rootstock, treatment, and their interaction with S. Citrumelo, which presented better nutrient status than Sour Orange; and Si which differed depending on citrus tissue. It appears that S. Citrumelo rootstock is the most tolerant for ‘Nova’ mandarin plants under salinity, whereas salt tolerance in grafted citrus plants is not improved by Si application, indicating that the beneficial role of Si depends on the cultivar or rootstock–scion combinations.  相似文献   

17.
Due to limited availability of arable land and high market demand for off-season vegetables, cucurbits (plants in the family Cucurbitaceae) are continuously cultivated under unfavorable conditions in some countries. These conditions include environments that are too cold, wet, or dry, or are cool low-light winter greenhouses. Successive cropping can increase salinity, the incidence of cucurbit pests, and soilborne diseases like fusarium wilt caused by Fusarium spp. These conditions cause various physiological and pathological disorders leading to severe crop loss. Chemical pest control is expensive, not always effective, and can harm the environment. Grafting can overcome many of these problems. In fact, in many parts of the world, grafting is a routine technique in continuous cropping systems. It was first commonly used in Japan during the late 1920s by grafting watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] onto pumpkin [Cucurbita moschata Duchesne ex. Poir] rootstocks. Soon after, watermelons were grafted onto bottle gourd [Lagenaria siceraria (Molina) Standl.] rootstocks. This practice helped control declining yield due to soilborne diseases. China produces more than half the world's watermelons and cucumbers (Cucumis sativus L.), and approximately 20% of these are grafted. Use of rootstocks can enhance plant vigor through vigorous attainment of soil nutrients, avoidance of soil pathogens and tolerance of low soil temperatures, salinity, and wet-soil conditions. The type of rootstock affects cucurbit plant growth, yield, and fruit quality. Cucurbit grafting is rare in the United States, but with continued loss of quality disease-free farmland along with the phase-out of methyl bromide, the U.S. cucurbit industry sees grafting as an attractive option. Some seed companies now offer watermelon transplants grafted onto squash or bottle gourd rootstocks, and some transplant facilities offer grafting services. There have been thorough analyses of cucurbit grafting in other countries, but the literature in English is limited. This review summarizes the state of the cucurbit grafting industry on a global level, translating work published in many languages.  相似文献   

18.
Grafting desirable crop varieties on stress-tolerant rootstocks provides an opportunity to increase crop salt tolerance. Here, a commercial hybrid tomato variety was grafted on two populations of recombinant inbred lines developed from a salt-sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt-tolerant lines, as male parents, from S. pimpinellifolium, the P population, and S. cheesmaniae, the C population, to identify an easy screening method for identifying rootstocks conferring salt tolerance in terms of fruit yield. Potential physiological components of salt tolerance were assessed in the scion: leaf biomass, [Na+], nutrition, water relations and xylem ABA concentration. A significant correlation between scion fruit yield and scion leaf fresh weight, water potential or the ABA concentration was found in the C population under salinity, but the only detected QTL did not support this relationship. The rootstocks of the P population clearly affected seven traits related to the sodium, phosphorous and copper concentrations and water content of the scion leaf, showing heritability estimates around 0.4 or higher. According to heritability estimates in the P population, up to five QTLs were detected per trait. QTLs contributing over 15% to the total variance were found for P and Cu concentrations and water content of the scion leaf, and the proportion of fresh root weight. Correlation and QTL analysis suggests that rootstock-mediated improvement of fruit yield in the P population under salinity is mainly explained by the rootstock’s ability to minimise perturbations in scion water status.  相似文献   

19.
The K+, Na+/H+ antiporter LeNHX2 and the regulatory kinase SlSOS2 are important determinants of salt tolerance in tomato plants and their fruit production ability. In this work, we have analyzed the effects of LeNHX2 and SlSOS2 co-overexpression on fruit production, quality in tomato plants (Solanum lycopersicum L. cv. MicroTom), and analyzed physiological parameters related to salt tolerance. Plants overexpressing LeNHX2, SlSOS2 or both were grown in greenhouse. They were treated with 125 mM NaCl or left untreated and their salt tolerance was analyzed in terms of plant biomass and fruit yield. Under NaCl cultivation conditions, transgenic tomato plants overexpressing either SlSOS2 or LeNHX2 or both grew better and showed a higher biomass compared to their wild-type plants. Proline, glucose and protein content in leaves as well as pH and total soluble solid (TSS) in fruits were analyzed. Our results indicate that salinity tolerance of transgenic lines is associated with an increased proline, glucose and protein content in leaves of plants grown either with or without NaCl. Salt treatment significantly reduced yield, pH and TSS in fruits of WT plants but increased yield, pH and TSS in fruits of transgenic plants, especially those overexpressing both LeNHX2 and SlSOS2. All these results indicate that the co-overexpression of LeNHX2 and SlSOS2 improve yield and fruit quality of tomato grown under saline conditions.  相似文献   

20.
The aim of the current work was to determine whether grafting could improve copper (Cu) tolerance of cucumber, and to study the changes induced by the rootstock in the shoot growth at agronomical and physiological levels. A greenhouse experiment was carried out to determine yield, growth, fruit quality, leaf gas exchange, chlorophyll and carotenoids contents, electrolyte leakage, mineral composition and assimilate partitioning of cucumber plants (Cucumis sativus L. cv. ‘Akito’), either ungrafted or grafted onto the commercial rootstock ‘Shintoza’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne) and cultured in nutrient film technique (NFT). Plants were supplied with nutrient solutions having three levels of Cu concentration [0.3 (control), 47, or 94 μM]. Significant depression of yield, shoot and root biomass production, and fruit quality (low fruit pH, and high Cu content) in Cu treated cucumber plants was observed, and this effect varied as a function of Cu concentration in NFT solution. The relative yield of cucumber decreased by ≈3.4% for each unit of increase in leaf tissue Cu concentrations above the threshold value (7.8 μg g−1). At the two higher Cu concentrations (47 and 94 μM Cu), the percentages of yield, shoot and root biomass weight reductions were significantly lower in grafted plants in comparison to those of the ungrafted plants. Excessive Cu, especially at 94 μM Cu, inhibited photosynthesis, pigment synthesis, and membrane integrity. The Cu-related reductions in net assimilation, stomatal conductance, chlorophyll and carotenoid content were more severe in ungrafted plants in comparison with those grafted on 'Shintoza’. The percentage of electrolyte leakage was significantly higher in ungrafted plants especially those with severe Cu toxicity (94 μM Cu). The accumulation of Cu in leaf tissue at 47 and 94 μM Cu, with respect to control, were significantly lower in grafted plants (138 and 181%, respectively) in comparison to that of ungrafted plants (about 235 and 392%, respectively). Significant reduction of macro- (N, K, Ca and Mg) and micro-elements (Fe, Mn and Zn) in cucumber leaf tissue was found under moderate and severe Cu stresses especially on ungrafted plants. The improved crop performance of grafted plants was attributed to their strong capacity to inhibit Cu accumulation in the aerial parts and to maintain a better plant nutritional status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号