首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Explants of fetal rabbit lung were established on the 25th day of gestation. These were maintained in serum-free medium for periods up to 10 days. During this time, the cultures exhibited morphological changes typical of terminal lung differentiation. Morphological evidence was also obtained for synthesis and secretion of pulmonary surfactant in these explants. beta-Adrenergic receptors were identified in these lung explants. Exposure of the explants to 10(-7)M dexamethasone on the third day of culture resulted in a significant increase in the number of beta-adrenergic receptors in the tissue without a change in receptor affinity. The effect of dexamethasone in organ culture was dose-dependent, a maximum increase in receptor number being observed within 48 hours of incubation with a hormone concentration of 1 x 10(-7)M. Exposure of the explant tissue to 1 x 10(-7)M triiodothyronine resulted in no significant increase in the concentration of beta-adrenergic receptors and no change in receptor affinity. These results suggest that glucocorticoids may potentiate the effects of beta-adrenergic agents in the fetal lung by increasing the numbers of their receptors. The effects of triiodothyronine upon the fetal lung do not appear to be mediated by this mechanism.  相似文献   

2.
The development of the fetal lung is regulated by fibroblast-type-II cell communications which involve fibroblast pneumonocyte factor (FPF). FPF production is positively regulated by glucocorticoids and negatively regulated by dihydrotestosterone (DHT) and transforming growth-factor beta (TGF-beta). We studied whether DHT or TGF-beta affected other steps in the process of lung maturation, by studying how the developing lung in organ culture would respond to exogenously supplied FPF after DHT or TGF-beta exposure. Fetal rabbit (day 19 of gestation) lung organ cultures were prepared and cultured in the presence of cortisol, DHT or TGF-beta. After seven days, the media were replaced with serum-free medium containing either cortisol or FPF conditioned medium. The incorporation of [14C]glycerol into surfactant lamellar body DSPC was studied over 24 h as the index of surfactant synthesis. Results were compared to simultaneous control cultures. Treatment had no significant effect on tissue protein concentration or on the efficiency of lamellar body recovery. Cortisol stimulated baseline incorporation of glycerol into DSPC. This was inhibited by DHT, such that DHT plus cortisol treatment was no different from untreated controls. FPF stimulated the incorporation of glycerol into DSPC, and did so even after culture treatment with DHT. Cultures treated with TGF-beta exhibited glycerol incorporation similar to untreated controls. After TGF-beta exposure, FPF did not stimulate glycerol incorporation into DSPC. We conclude that DHT interferes with progression of lung development by delaying the appearance of FPF production by the fibroblast. TGF-beta, on the other hand, inhibits other elements of lung maturation besides FPF production. We speculate that TGF-beta interferes with type-II cell development such that the cell cannot respond to FPF.  相似文献   

3.
Lung tissue obtained from fetal rabbits of 23 days gestational age was maintained in organ culture to study the in vitro formation of lamellar body phospholipids. During the culture period, the epithelium of the prealveolar ducts of the explants differentiated to form type II pneumonocytes. After 8 days in culture, the explants were harvested, homogenized, and two lamellar body fractions were isolated by sucrose density gradient centrifugation. The lamellar body fraction which best retained the distinct multilamellar structure was recovered at the interface between a solution of buffer without sucrose and buffer containing 0.41 m sucrose. The phospholipid compositions of both lamellar body fractions were similar to those reported for lamellar bodies and surfactant isolated from fetal rabbit lung, with the exception of a slightly higher phosphatidylethanolamine content. The disaturated phosphatidylcholine content of the lamellar body fractions, expressed as a percentage of total lipid phosphorus, was not influenced by the presence of palmitate in the medium.  相似文献   

4.
5.
Sex differences in amniotic fluid and lung lavage surfactant have been found. Although these studies suggest that augmented fetal surfactant synthesis occurs earlier in the female fetus, there is little direct evidence for a sex difference in fetal surfactant synthesis. We studied the synthesis of surfactant by evaluating the appearance of labelled phospholipids in lamellar bodies recovered from sex-specific organ culture of fetal rabbit lungs. Furthermore, we studied the ability of dexamethasone to stimulate surfactant synthesis in male and female fetal lungs. Organ culture was begun on day 21 of gestation. After 5 days the incorporation of [1,3-14C]glycerol into phosphatidylcholine (PC), disaturated phosphatidylcholine, phosphatidylinositol (PI), and phosphatidylglycerol was studied. Female lungs in organ culture synthesized more disaturated PC per milligram protein than male lungs. In the presence of dexamethasone (10(-8) M) and dihydrotestosterone (10(-8) M) an increased synthesis was noted in the female cultures of PC (270%), disaturated PC (234%), PI (281%), and phosphatidylglycerol (754%). No significant increase in the synthesis of PC or disaturated PC was observed in the male cultures. However in the male cultures smaller increases in the synthesis of PI (193%) and of phosphatidylglycerol (360%) were observed. Overall, dexamethasone stimulated synthesis in females but not in males such that significant differences in the synthesis of all phospholipids were found in the presence of 10(-8) M dexamethasone. These studies show that the synthesis of surfactant in the fetal lung is sexually dimorphic, as is the ability of dexamethasone to regulate synthesis. An understanding of the mechanism which causes these differences may provide important insight into the control of the developmental clock which regulates the orderly progression of development.  相似文献   

6.
7.
Development of fetal rat intestine in organ and monolayer culture   总被引:12,自引:0,他引:12  
《The Journal of cell biology》1985,100(5):1611-1622
Maturation and differentiation of intestinal epithelial cells was demonstrated in segments of fetal rat small intestine, maintained for more than a month in suspension organ culture, by ultrastructural, biochemical, and immunological criteria. Over a 5-7 d period, fragments of fetal intestine evolved into globular structures covered with a single columnar epithelium ultrastructurally similar to suckling villus cells. Loose mesenchymal cells, cellular debris, and collagen were present inside the structures. After 6 d in culture, goblet cells, not present in the fetal intestine at day 18, were numerous and well developed. Intestinal endocrine cells were also observed. Immunofluorescence studies employing monoclonal antibodies specific for villus and crypt cells in vivo, and various enzyme assays, have demonstrated a level of differentiation and maturation of the cultured epithelial cells similar but not identical to that of suckling intestinal mucosa in vivo. Crypts and crypt cell markers were not observed in the the cultures. Addition of glucocorticoids to the culture medium resulted in the induction of sucrase-isomaltase but failed to promote most of the functional changes characteristic of the intestinal epithelium at weaning in vivo. Epithelial cells were identified in explants derived from the organ cultures by their specific expression of intestinal cytokeratin. Differentiation-specific markers, present in the epithelial cells in primary cultures, were lost upon selection and subculturing of pure epithelial cell populations. These results suggest a requirement for mesenchymal and/or extracellular matrix components in the maintenance of the differentiated state of the epithelial cells. The fetal intestinal organ cultures described here present significant advantages over traditional organ and monolayer culture techniques for the study of the cellular and molecular interactions involved in the development and differentiation of the intestinal epithelium.  相似文献   

8.
Summary Lung organ culture has been a widely used system for studying differentiation and maturation of alveolar epithelium through various culture conditions. The purpose of this work was to carefully characterize in vitro lung biochemical diffeentiation through isolation of surfactant fraction from tissue and to search for optimal culture conditions. Fetal rat lung was explanted on the 18th gestational day for studying glycogen storage, and on the 20th gestational day for studying surfactant accretion, and cultivated for 48 h. Morphologic differentiation was studies byelectron microscopy tissue explanted on the 17th or 18th gestational days and cultivated for various times. Glycogen storage was greater on fluid medium, although less than occurring in vivo. Cellular integrity and surfactant accumulation were maximal on a semisolid medium containing 0.5% agar. Use of O2-CO2 instead of air-CO2 for gassing the explants slighlty decreased phospholipid accumulation. Among media used in previous lung culture studies, Waymouth MB 752/1 was the only one to allow net glycogen accumulation in vitro. The most favorable media for surfactant phospholipid accretion were Waymouth MB 752/1, Eagle’s minimum essential and its Dulbeccco’s modification, CMRL 1066, and NCTC 109. They allowed a 12- to 14-fold increase of surfactant fraction phospholipids in vitro, which is similar to the increase occurring in vivo during the same peiod. Ham’s F10 and F12 media allowed a six fold increase. RPMI 1640 and medium 199 (M199) allowed only a three fold increase. Phospholipid concentration in nonsurfactant fraction only doubled during culture, and differences between various media were much less marked. DNA concentration changed little during culture. Morphologic differentiation of epithelial cells was advanced as compared with in vivo timing in a medium allowing maximal surfactant accretion (Waymouth MB 752/1) but not in a medium allowing low surfactant increase (RPMI 1640). The possible role of compositional differences between media is discussed.  相似文献   

9.
Fetal livers from rabbits at 30 days of gestation were grown in organ culture and the effect of human milk added to the culture medium on the ability of liver to excrete bile acids (cholylglycine) was examined. Human breast milk promoted a concentration related increase in cholylglycine accumulation in the medium. The factor(s) present in milk responsible for this effect appear to be non-protein in nature and is associated with the floating lipid fraction. Furthermore, milk enhances the integrity of liver explants, as established by light microscopy.  相似文献   

10.
Human fetal lung tissue obtained during the second trimester was cultured as organ culture with or without cortisol. The effect of cortisol on the phospholipid metabolism, as related to the appearance of osmiophilic lamellar bodies and the localisation of newly incorporated choline, was studied. In cortisol-treated explants, the concentration of saturated lecithins and the incorporation of (Me-3H)-choline into saturated lecithins increases significantly concomitantly with an increased number of osmiophilic lamellar bodies. The labelled choline is predominantly associated with these bodies. The obtained results indicate that cortisol accelerates the synthesis of pulmonary surfactant in the human fetal lung as early as in the second trimester.  相似文献   

11.
12.
13.
Fetal rat lungs placed in invitro organ culture at 15.5 days gestation grow significantly based on accumulation of DNA and protein. In the experimental system described, DNA accumulated rapidly during the first three days in culture and increased from 4.8 to 15.6 micrograms per lung culture. Protein content increased more slowly and reached a value more than double the initial value after six days in the culture system. Glycogen accumulated in the tissue during the first six days in culture and was depleted during the subsequent culture period, a pattern strikingly similar to that observed during lung development invivo. Phospholipid accumulation was biphasic with respect to time with an inflection point at about the sixth day of culture. The phosphatidylcholine species synthesized in the culture system invitro were similar to those produced invivo in fetal lung at 21 days gestation.  相似文献   

14.
Summary Differentiation-arrested lung cell cultures were developed from fetal rats of various gestational ages. In contrast to previously published observations with cultures in a pO2 of ∼142 mm Hg, cultures developed in a pO2 of ∼30 mm Hg, close to the normal fetal arterial pO2, have improved plating efficiency and a slightly increased growth rate. They did not, however, show gestation-dependent increases of choline incorporation into phospholipids, nor did immature lung cell cultures respond to dexamethasone or triiodothyronine, singly or in combination, by increased choline incorporation into saturated lecithin. The incorporation of choline and glycerol into lipids suggested a mature rate of lipid synthesis by immature cultures at a pO2 ∼30 mm Hg, despite preservation of an immature morphology. Electron microscope observations revealed no gross differences between immature cultures developed at either pO2. The cellular mechanisms underlying these differences are unclear but suggest that oxygen tension may significantly influence results obtained with in vitro studies of lipid synthesis by immature lung. This work was supported by grants from the Medical Research Council of Canada, the Ontario Thoracic Society, and the Physicians' Services Incorporated Foundation.  相似文献   

15.
Summary Explants of fetal rat liver maintained in organ culture lost about 40% of their mass in 42 hr of incubation as a result of decrease in blood cells and hepatocytes. Proteins from the cytosol and particulate elements of the tissue were found in the culture medium. About 60% of this protein was degraded to peptides during culture. The transfer of malate and lactate dehydrogenases from tissue to medium paralleled that of proteins. Glutamate dehydrogenase was lost from the mitochondria and in part leaked through the cell membrane into the medium. Net loss of activity of the three enzymes occurred, probably as a consequence of proteolytic degradation. Of 12 enzymes in liver tissue, the specific activities of eight—soluble malate dehydrogenase, glutamate dehydrogenase, succinate dehydrogenase, phosphopyruvate carboxylase, hexosediphosphatase, glucose-6-phosphatase, tyrosine, aminotransferase, and alanine aminotransferase—were unchanged or increased. Glycogen synthetase, aspartate aminotransferase, pyruvate kinase, and lactate dehydrogenase decreased. Although changes in membrane permeability may have had some influence on the results reported, the predominant effect was due to loss of protein from tissue as a result of discharge of total contents of some of the cells into the medium. The residual explanted tissue retained its structural integrity. It is concluded that fetal rat liver in organ culture provides a suitable model system for controlled studies with this organ in vitro. This investigation was supported by grants from the National Institute of Child Health and Human Development (RO 1 HD09715), National Cancer Institute (CA 14194), and United States Public Health Service General Research Support Grant RR 5589.  相似文献   

16.
The effect of gentamicin in the culture of fetal rat intestine was studied. Fetal rat intestine was cultured with gentamicin or kanamycin at the concentration between 4 to 200 micrograms/ml. Kanamycin did not have influence on lactase, maltase and ALP activities. On the other hand, gentamicin caused decrease of lactase and ALP activities at the concentration of 40 and 200 micrograms/ml compared with the activities at 4 micrograms/ml. Maltase activities did not decrease with gentamicin. Our data suggest that gentamicin could affect lactase and ALP activities and lower concentration should be used in the culture.  相似文献   

17.
18.
A D Heggie 《Teratology》1977,15(1):47-55
Paired organ cultures of metacarpal, metatarsal, and long bones of previable human embryos of 7 to 12 weeks' gestation and tibias of 17-day rat fetuses with inoculated with live or ultraviolet-inactivated rubella virus or control fluids and the growth of the bones was measured by increase in wet weight. In several cultures the ability of the human bones to incorporate 35S, a measure of rate of mucopolysaccharide synthesis, was tested. Growth of human and rat bones was retarded in cultures inoculated with live virus but not in cultures inoculated with inactivated virus or control fluids. Mean 35S uptake was increased by approximately 25% in virus-inoculated cultures of bones of 9- to 12-week human embryos. No histological abnormalities were seen. These findings suggest that (1) defective bone growth in congenital rubella is a direct effect of viral infection of bone, (2) a disorder of mucopolysaccharide syntheses may contribute to the osseous lesions that occur in this disease, and (3) organ cultures of human embryonic and fetal rat bones may serve as convenient models for studying the pathogenesis of this virus-induced congenital osteopathy.  相似文献   

19.
Summary In utero, at around 23 wk gestation, the progenitor epithelium of distal airway differentiates into type I and type II pneumatocytes. Human fetal lung organ cultures, as early as 12 wk gestation, have the competence to self-differentiate. Distal airway epithelial immunoreactivity to cytokeratins CK 7,8, and 18 decreases with differentiation both in utero and in organ culture, whereas reactivity to epithelial membrane antigen remains constant in both. As distal airways dilate, the mean percentage airspace of fetal lungs in organ culture increases to 58%, equivalent to lung of gestation 26.0±7.3 wk. In organ culture, capillary blood vessels, visualized by vimentin immunoreactivity, remodel and more closely approximate the epithelium but without direct invasion. In utero, at 23 wk gestation, elastin appears as condensation around airways and forms a basis for secondary crests which, by 29 wk gestation, evolve into alveolar septae. In organ culture, no elastin is deposited, no secondary or alveolar crests form, and the lung retains a simple saccular structure. Differentiation of the terminal airway epithelium and mesodermal maturational events to facilitate gas exchange, such as capillary invasion or secondary-alveolar crest formation, are almost synchronous in human lung in utero but clearly dissociate in organ culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号