首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deficiency of dystrophin, a critical membrane stabilizing protein, in the mdx mouse causes an elevation in intracellular calcium in myocytes. One mechanism that could elicit increases in intracellular calcium is enhanced influx via the L-type calcium channels. This study investigated the effects of the dihydropyridines BAY K 8644 and nifedipine and alterations in dihydropyridine receptors in dystrophin-deficient mdx hearts. A lower force of contraction and a reduced potency of extracellular calcium (P < 0.05) were evident in mdx left atria. The dihydropyridine agonist BAY K 8644 and antagonist nifedipine had 2.7- and 1.9-fold lower potencies in contracting left atria (P < 0.05). This corresponded with a 2.0-fold reduction in dihydropyridine receptor affinity evident from radioligand binding studies of mdx ventricular homogenates (P < 0.05). Increased ventricular dihydropyridine receptor protein was evident from both radioligand binding studies and Western blot analysis and was accompanied by increased mRNA levels (P < 0.05). Patch-clamp studies in isolated ventricular myocytes showed no change in L-type calcium current density but revealed delayed channel inactivation (P < 0.05). This study indicates that a deficiency of dystrophin leads to changes in dihydropyridine receptors and L-type calcium channel properties that may contribute to enhanced calcium influx. Increased influx is a potential mechanism for the calcium overload observed in dystrophin-deficient cardiac muscle.  相似文献   

2.
We have studied the in vivo response of the Na+/H+ antiporter in skeletal muscle to beta 2-adrenoceptor stimulation with isoprenaline and the effect of blocking L-type calcium channels with nifedipine. Na+/H+ antiporter activity in skeletal muscle in vivo increased after beta 2-adrenoceptor stimulation with isoprenaline; nifedipine attenuated that effect. This suggests that opening of L-type calcium channels is necessary for full activation of the Na+/H+ antiporter in skeletal muscle. Bleeding also increased Na/H+ antiporter activity, which we believe could be explained by an increase in sympathetic nervous system activity as a result of hypotension. This may be one of the mechanisms by which animals under stress prepare their skeletal muscle for exercise as part of the 'fright and flight' reaction.  相似文献   

3.
High doses of the beta2-adrenergic receptor (AR) agonist clenbuterol can induce necrotic myocyte death in the heart and slow-twitch skeletal muscle of the rat. However, it is not known whether this agent can also induce myocyte apoptosis and whether this would occur at a lower dose than previously reported for myocyte necrosis. Male Wistar rats were given single subcutaneous injections of clenbuterol. Immunohistochemistry was used to detect myocyte-specific apoptosis (detected on cryosections via a caspase 3 antibody and confirmed with annexin V, single-strand DNA labeling, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling). Myocyte apoptosis was first detected at 2 h and peaked 4 h after clenbuterol administration. The lowest dose of clenbuterol to induce cardiomyocyte apoptosis was 1 microg/kg, with peak apoptosis (0.35 +/- 0.05%; P < 0.05) occurring in response to 5 mg/kg. In the soleus, peak apoptosis (5.8 +/- 2%; P < 0.05) was induced by the lower dose of 10 microg/kg. Cardiomyocyte apoptosis was detected throughout the ventricles, atria, and papillary muscles. However, this damage was most abundant in the left ventricular subendocardium at a point 1.6 mm, that is, approximately one-quarter of the way, from the apex toward the base. beta-AR antagonism (involving propranolol, bisoprolol, or ICI 118551) or reserpine was used to show that clenbuterol-induced myocardial apoptosis was mediated through neuromodulation of the sympathetic system and the cardiomyocyte beta1-AR, whereas in the soleus direct stimulation of the myocyte beta2-AR was involved. These data show that, when administered in vivo, beta2-AR stimulation by clenbuterol is detrimental to cardiac and skeletal muscles even at low doses, by inducing apoptosis through beta1- and beta2-AR, respectively.  相似文献   

4.
Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.  相似文献   

5.
Angiotensin II and norepinephrine (NE) have been implicated in the neurohumoral response to pressure overload and the development of left ventricular hypertrophy. The purpose of this study was to determine the temporal sequence for activation of the renin-angiotensin and sympathetic nervous systems in the rat after 3-60 days of pressure overload induced by aortic constriction. Initially on pressure overload, there was transient activation of the systemic renin-angiotensin system coinciding with the appearance of left ventricular hypertrophy (day 3). At day 10, there was a marked increase in AT(1) receptor density in the left ventricle, increased plasma NE concentration, and elevated cardiac epinephrine content. Moreover, the inotropic response to isoproterenol was reduced in the isolated, perfused heart at 10 days of pressure overload. The affinity of the beta(2)-adrenergic receptor in the left ventricle was decreased at 60 days. Despite these alterations, there was no decline in resting left ventricular function, beta-adrenergic receptor density, or the relative distribution of beta(1)- and beta(2)-receptor sites in the left ventricle over 60 days of pressure overload. Thus activation of the renin-angiotensin system is an early response to pressure overload and may contribute to the initial development of cardiac hypertrophy and sympathetic activation in the compensated heart.  相似文献   

6.
Previous research has shown that the CAMK (calcium/calmodulin dependent protein kinase) inhibitor, KN62, can lead to reductions in insulin stimulated glucose transport. Although controversial, an L-type calcium channel mechanism has also been hypothesized to be involved in insulin stimulated glucose transport. The purpose of this report was to determine if 1) L-type calcium channels and CAMK are involved in a similar signaling pathway in the control of insulin stimulated glucose transport and 2) determine if insulin induces an increase in CAMKII phosphorylation through an L-type calcium channel dependent mechanism. Insulin stimulated glucose transport was significantly (p<0.05) inhibited to a similar extent ( approximately 30%) by both KN62 and nifedipine in rat soleus and epitrochelaris muscles. The new finding of these experiments was that the combined inhibitory effect of these two compounds was not greater than the effect of either inhibitor alone. To more accurately determine the interaction between CAMK and L-type calcium channels, we measured insulin induced changes in CAMKII phosphorylation using Western blot analysis. The novel finding of this set of experiments was that insulin induced an increase in phosphorylated CAMKII ( approximately 40%) in rat soleus muscle that was reversed in the presence of KN62 but not nifedipine. Taken together these results suggest that a CAMK signaling mechanism may be involved in insulin stimulated glucose transport in skeletal muscle through an L-type calcium channel independent mechanism.  相似文献   

7.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

8.
Clenbuterol is a relatively selective beta2-adrenergic partial agonist that has bronchodilator activity. This drug has been investigated as a potential countermeasure to microgravity- or disuse-induced skeletal muscle atrophy because of presumed anabolic effects. The purpose of this study was to: 1) analyze the anabolic effect of clenbuterol's (-)-R and (+)-S enantiomers (0.2 mg/kg) on muscles (cardiac and skeletal) and other organs; and 2) compare responses of enantiomers to the racemate (0.4 mg/kg and 1.0 mg/kg). Male Sprague Dawley rats were treated with: a) racemic clenbuterol (rac-clenbuterol, 0.4 or 1.0 mg/kg); b) enantiomers [clenbuterol (-)-R or (+)-S]; or c) vehicle (1.0 mL/kg buffered saline). Anabolic activity was determined by measuring tissue mass and protein content. HPLC teicoplanin chiral stationary phase was used to directly resolve racemic clenbuterol to its individual enantiomers. In skeletal muscle, both enantiomers had equal anabolic activity, and the effects were muscle- and anatomic region-specific in magnitude. Although the enantiomers did not affect the ventricular mass to body weight ratio, clenbuterol (+)-S induced a small but significant increase in ventricular mass. Both clenbuterol enantiomers produced significant increases in skeletal muscle mass, while being less active in producing cardiac ventricular muscle hypertrophy than the racemic mixture.  相似文献   

9.
Clenbuterol, a compound classified as a beta2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used beta2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 microM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective beta1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol (P < 0.05). Incubation with 2 microg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 microM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.  相似文献   

10.
L-type calcium currents conducted by CaV1.2 channels initiate excitation-contraction coupling in cardiac and vascular smooth muscle. In the heart, the distal portion of the C terminus (DCT) is proteolytically processed in vivo and serves as a noncovalently associated autoinhibitor of CaV1.2 channel activity. This autoinhibitory complex, with A-kinase anchoring protein-15 (AKAP15) bound to the DCT, is hypothesized to serve as the substrate for β-adrenergic regulation in the fight-or-flight response. Mice expressing CaV1.2 channels with the distal C terminus deleted (DCT-/-) develop cardiac hypertrophy and die prematurely after E15. Cardiac hypertrophy and survival rate were improved by drug treatments that reduce peripheral vascular resistance and hypertension, consistent with the hypothesis that CaV1.2 hyperactivity in vascular smooth muscle causes hypertension, hypertrophy, and premature death. However, in contrast to expectation, L-type Ca2+ currents in cardiac myocytes from DCT-/- mice were dramatically reduced due to decreased cell-surface expression of CaV1.2 protein, and the voltage dependence of activation and the kinetics of inactivation were altered. CaV1.2 channels in DCT-/- myocytes fail to respond to activation of adenylyl cyclase by forskolin, and the localized expression of AKAP15 is reduced. Therefore, we conclude that the DCT of CaV1.2 channels is required in vivo for normal vascular regulation, cell-surface expression of CaV1.2 channels in cardiac myocytes, and β-adrenergic stimulation of L-type Ca2+ currents in the heart.  相似文献   

11.
The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated alpha 1, alpha 2, beta, gamma, and sigma. The alpha 1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels.  相似文献   

12.
beta-Adrenoceptor agonists are reported to induce skeletal muscle hypertrophy and hence serve as valuable adjunct to the treatment of wasting disorders. In the present study, we attempted to find out whether metabolic and physiologic characteristics of fibres are important in determining skeletal muscle response to clenbuterol (an adrenergic receptor agonist) therapy, as proposed in the treatment of wasting disorders. The treatment of mice with clenbuterol (2 mg/kg body wt for 30 days) resulted in skeletal muscle hypertrophy, more common amongst fast-twitch glycolytic fibres/muscle, with increase in body mass and a parallel rise in muscle mass to body mass ratio. Measurement of fibre diameters in soleus (rich in slow-twitch oxidative fibres), ALD or anterior latissimus dorsi (with a predominance of fast-twitch glycolytic fibres) and gastrocnemius (a mixed-type of muscle) from clenbuterol-treated mice for 30 days revealed noticeable increase in the per cent population of narrow slow-twitch fibre and a corresponding decline in white-type or fast-twitch glycolytic fibres in gastrocnemius and ALD. As revealed by counting of muscle cells in soleus, narrow red fibres declined with corresponding increase in white-type glycolytic fibres population. A significant decline in the succinic dehydrogenase activity was observed, thereby suggesting abnormality in oxidative activity of skeletal muscles in response to clenbuterol therapy.  相似文献   

13.
Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21?days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4?mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9?days of treatment, while hypertrophy was observed only in EDL after 9?days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14?days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.  相似文献   

14.
The molecular mechanisms controlling -adrenergic receptor agonist (BA)-induced skeletal muscle hypertrophy are not well known. We presently report that BA exerts a distinct muscle- and muscle fiber type-specific hypertrophy. Moreover, we have shown that pharmacologically or genetically attenuating extracellular signal-regulated kinase (ERK) signaling in muscle fibers resulted in decreases (P < 0.05) in fast but not slow fiber type-specific reporter gene expressions in response to BA exposure in vitro and in vivo. Consistent with these data, forced expression of MAPK phosphatase 1, a nuclear protein that dephosphorylates ERK1/2, in fast-twitch skeletal muscle ablated (P < 0.05) the hypertrophic effects of BA feeding (clenbuterol, 20 parts per million in water) in vivo. Further analysis has shown that BA-induced phosphorylation and activation of ERK occurred to a greater (P < 0.05) extent in fast myofibers than in slow myofibers. Analysis of the basal level of ERK activity in slow and fast muscles revealed that ERK1/2 is activated to a greater extent in fast- than in slow-twitch muscles. These data indicate that ERK signaling is differentially involved in BA-induced hypertrophy in slow and fast skeletal muscles, suggesting that the increased abundance of phospho-ERK1/2 and ERK activity found in fast-twitch myofibers, compared with their slow-twitch counterparts, may account, at least in part, for the fiber type-specific hypertrophy induced by BA stimulation. These data suggest that fast myofibers are pivotal in the adaptation of muscle to environmental cues and that the mechanism underlying this change is partially mediated by the MAPK signaling cascade. muscle fiber type; mitogen-activated protein kinase signaling pathways; mechanism  相似文献   

15.
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.  相似文献   

16.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   

17.
Overall proteolysis and the activity of skeletal muscle proteolytic systems were investigated in rats 1, 2, or 4 days after adrenodemedullation. Adrenodemedullation reduced plasma epinephrine by 95% and norepinephrine by 35% but did not affect muscle norepinephrine content. In soleus and extensor digitorum longus (EDL) muscles, rates of overall proteolysis increased by 15-20% by 2 days after surgery but returned to normal levels after 4 days. The rise in rates of protein degradation was accompanied by an increased activity of Ca(2+)-dependent proteolysis in both muscles, with no significant change in the activity of lysosomal and ATP-dependent proteolytic systems. In vitro rates of Ca(2+)-dependent proteolysis in soleus and EDL from normal rats decreased by ~35% in the presence of either 10(-5) M clenbuterol, a beta(2)-adrenergic agonist, or epinephrine or norepinephrine. In the presence of dibutyryl cAMP, proteolysis was reduced by 62% in soleus and 34% in EDL. The data suggest that catecholamines secreted by the adrenal medulla exert an inhibitory control of Ca(2+)-dependent proteolysis in rat skeletal muscle, mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.  相似文献   

18.
Phosphorylation of serine 1928 (Ser(1928)) of the cardiac Ca(v)1.2 subunit of L-type Ca(2+) channels has been proposed as the mechanism for regulation of L-type Ca(2+) channels by protein kinase A (PKA). To test this directly in vivo, we generated a knock-in mouse with targeted mutation of Ser(1928) to alanine. This mutation did not affect basal L-type current characteristics or regulation of the L-type current by PKA and the beta-adrenergic receptor, whereas the mutation abolished phosphorylation of Ca(v)1.2 by PKA. Therefore, our data show that PKA phosphorylation of Ser(1928) of Ca(v)1.2 is not functionally involved in beta-adrenergic stimulation of Ca(v)1.2-mediated Ca(2+) influx into the cardiomyocyte.  相似文献   

19.
The skeletal alpha-actin gene encodes a major component of the embryonic cardiac sarcomere that is strongly and selectively re-induced during beta-adrenoceptor-mediated hypertrophy in neonatal rat cardiac myocytes. We present evidence that beta-adrenergic induction of this gene is mediated, not by cAMP, but by a calcium-dependent pathway involving ryanodine-sensitive calcium stores. Nifedipine-induced blockade of the plasma membrane L-type calcium entry channel prevented induction of skeletal alpha-actin mRNA by isoproterenol. Activation of calcium entry by the dihydropyridine agonist Bay K8644 independently induced skeletal alpha-actin mRNA, as did cholera toxin-mediated activation of Gs. Induction of skeletal alpha-actin mRNA by compounds that directly elevate cAMP was weak relative to their effects on other cAMP-dependent phenomena and required calcium entry. In addition, selective inhibition of protein kinase A with KT5720 did not block beta-adrenergic induction of skeletal alpha-actin. Calcium ionophore A23187 did not induce skeletal actin, but prevented its induction by isoproterenol. Ryanodine had bimodal effects: 10(-10) M ryanodine induced skeletal alpha-actin mRNA, whereas 10(-6) M ryanodine prevented skeletal actin induction by beta-adrenergic stimuli. We postulate that beta-adrenergic stimulation of skeletal alpha-actin mRNA requires G-protein-coupled calcium channel activation and compartmentalized calcium release in a manner independent of the cAMP/protein kinase A signal pathway.  相似文献   

20.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号