首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Effects of P fertilizers on growth of Douglas fir (Pseudotsuga menziesii var.menziesii (Mirb.) Franco.) seedlings were examined in pots and nursery beds. In pot experiments levels of P equivalent to 300 kg/ha were adequate for maximum growth over 14–18 weeks and resulted in available soil P levels of 80 ppm after 15 weeks' growth. Maximum growth in pots was obtained with shoot P concentrations of 0.18%–0.20%, with higher values at lower temperatures, but the optimum concentration for one-year old (1-0) nursery seedlings was 0.16% P. Growth of seedlings was greatly restricted at a soil temperature of 5°C and an air temperature of 12°C. At a soil temperature of 10°C and an air temperature of 14°C seedling P requirement was greater than at soil and air temperatures of 20°C.Comparison showed that monammonium phosphate was more effective than calcium superphosphate in stimulating growth in pots and nursery. Triple superphosphate was also effective in the nursery. Diammonium phosphate, potassium dihydrogen phosphate and phosphoric acid had no advantages as P sources in the nursery. Available P levels of 100–130 ppm, in the loamy sand and sandy loam nurseries studied, and needle P concentrations of 0.18%, when sampled in October, were associated with maximum growth of two-year old (2-0) seedlings.P fertilization decreased root/shoot ratio, but did not alter the allometric relationship of shoot to root. Improving P status from a low level increased root growth capacity in 2-0 seedlings and P fertilization of potted seedlings increased dry weight/height ratio. Uptakes per seed bed ha of 236 kg N, 31 kg P, 81 kg K and 73 kg Ca by 2-0 seedlings were comparable with, or greater than, uptake rates of agricultural crops. Recoveries of 6–11% of P from fertilizer were recorded in the nursery.  相似文献   

2.
Park S. Nobel 《Oecologia》1984,62(3):310-317
Summary Extreme temperatures near the soil surface, which can reach 70°C at the main study site in the northwestern Sonoran Desert, markedly affect seedling survival. Computer simulations indicated that for the rather spherical barrel cactus Ferocactus acanthodes (Lem.) Britt. & Rose the maximum surface temperature decreased 8°C and the minimum temperature increased 3°C as the seedling height was increased from 1 mm up to 50 mm. Simulated changes in shortwave and longwave irradiation alone showed that shading could decrease the maximum temperature by about 5°C for the common desert agave, Agave deserti Engelm., and raise the minimum 1°C. Actual field measurements on seedlings of both species, where shading would affect local air temperatures and wind speeds in addition to irradiation, indicated that shading decreased the average maximum surface temperature by 11°C in the summer and raised the minimum temperature by 3°C in winter.Seedlings grown at day/iight air temperatures of 30°C/20°C tolerated low temperatures of about -7°C and high temperatures of about 56°C, as measured by the temperature where stain uptake by chlorenchyma cells was reduced 50%. Seedling tolerance to high temperatures increased slightly with age, and F. acanthodes was more tolerant than A. deserti. Even taking the acclimation of high temperature tolerance into account (2.7°C increase per 10°C increase in temperature), seedlings of A. deserti would not be expected to withstand the high temperatures at exposed sites, consistent with previous observations that these seedlings occur only in protected microhabitats. Based primarily on greater high temperature acclimation (4.3°C per 10°C), seedlings of F. acanthodes have a greater high temperature tolerance and can just barely survive in exposed sites. Wide ranges in photoperiod had little effect on the thermal sensitivities of either species. When drought increased the chlorenchyma osmotic pressure from about 0.5 MPa to 1.3 MPa, seedlings of both species became about 2°C less tolerant of high temperatures, which would be nonadaptive in a desert environment, and 2°C more tolerant of low temperatures, which also occurs for other species.In conclusion, seedlings of A. deserti and F. acanthodes could tolerate tissue temperatures over 60°C when acclimated to high temperatures and below -8°C when acclimated to low temperatures. However, the extreme environment adjacent to desert soil requires sheltered microhabitats to protect the plants from high temperature damage and also to protect them from low temperature damage at their upper elevational limits.  相似文献   

3.
Soil temperature effects from minirhizotron lighting systems   总被引:2,自引:0,他引:2  
Van Rees  Ken C. J. 《Plant and Soil》1998,200(1):113-118
Observing root dynamics or soil fauna with minirhizotrons requires the use of incandescent or ultraviolet (UV) lighting systems. These light sources can generate heat which would be transferred to the surrounding soil adjacent to the minirhizotron observation tubes and thus may influence root growth and development or fauna activity. The objective of this study was to determine the effect of incandescent and UV light from a minirhizotron camera system on soil temperatures next to minirhizotron tubes. Temperature probes were attached next to and at 0.5 cm from the tube surface and the tubes were then placed in boxes with either a fine sand or a loamy clay soil. Incandescent light was operated stationary for 5 min or moved at 1 cm increments every 10 s down the tube for both dry and wet soils. The UV light was used in a stationary position for 10 minutes in both dry soils. Maximum temperature increases were 3.41–3.52 °C and 1.69–2.14 °C next to the tube for the dry and wet soils, respectively with 5 min of stationary incandescent light. Ultraviolet lights increased soil temperatures to a maximum of approximately 2.5 °C in the dry soil. Probes placed 0.5 cm from the tube surface also showed temperature increases up to 2.15 °C. Moving the light source every 10 s, however, resulted in lower temperature increases (<0.8 °C). Therefore short durations of light resulted in small temperature increases suggesting minimal impact on root development. Increased soil temperatures from longer durations of light, however, may alter root growth and development as well as soil fauna activity and warrants further study.  相似文献   

4.
Summary The tolerance of Opuntia bigelovii Engelm. (Cactaceae) to high temperature was investigated by subjecting stems to temperatures ranging from 25°C to 65°C for a 1-h period, after which various properties of chlorenchyma cells were examined. The temperatures at which activities depending on membrane integrity decreased by 50% were 60°C for electrolyte leakage, 52°C for staining by neutral red, and 51°C for plasmolysis for plants maintained at day/night air temperatures of 30°C/20°C. Nocturnal acid accumulation, which depends on stomatal opening and enzymatic reactions as well as membrane properties, was half-inactivated at a lower temperature, 46°C. Visual observation indicated that 50% of the stems subjected to a heat treatment of 52°C became necrotic in 2 weeks.Heat acclimation, which is apparently necessary for survival of O. bigelovii in the field, was investigated by raising the day/night air temperatures from 12°C/2°C to 60°C/50°C in 10°C steps every 2 weeks. The heat tolerance of the cellular properties increased with increasing air temperature; for a 10°C temperature increase, the half-inactivation temperature increased 2.9°C for electrolyte leakage, 3.0°C for staining, 3.8° C for stem survival, and fully 6.1°C for nocturnal acid accumulation. The relative order of these four properties with respect to heat tolerance did not change during the hardening, nocturnal acid accumulation remaining the most heat sensitive. The upper temperature for 50% survival was 59° for O. bigelovii when acclimated to day/night air temperatures of 50°C/40°C.  相似文献   

5.
Summary Comparison of clay and plastic pots for tomato propagation in six experiments showed plastic pots to give significantly better results than clay pots in winter and the converse to be true in summer. In each experiment the ratio of plant growth (dry weight) in clay and plastic pots was related to both the mean daily solar radiation and the mean outside night minimum temperature. In winter, plants in both types of container made significantly more growth when stood on open benches than when stood on benches with solid surfaces. These differences in growth were related to soil temperature, clay pots being cooler than plastic pots, the temperature difference between the types of pot ranging from approximately 1°C by night in winter to 4°C under high intensity solar radiation in summer. In winter, soil temperatures were often below the optimum, and in summer in excess of the optimum. By day, temperature within the pots showed highly significant correlation with solar radiation, and by night in winter pot temperature was negatively correlated with the difference between the glasshouse and the outside air temperature. Well-defined horizontal thermal gradients were found, and these were positively correlated with soil temperature. In wet soils the thermal gradients were less than in dry soils, and because of their higher thermal conductivity wet soils were warmer than dry soils. When the normal evaporative cooling from the porous walls of clay pots was prevented by a bituminous coating, the soil temperature during the night was not significantly different from that in plastic pots. By day, however, soil temperature in non-evaporating clay pots was less than that in evaporating clay pots, due to the lower thermal conductivity of the dry clay wall.  相似文献   

6.
The range of temperature and humidity conditions that can exist simultaneously at or near the ground surface on a bright summer day in a temperate climate are shown in a diagram. Cool and warm conditions are defined as having respectively a lower and a higher temperature than the air at a height of 1.50 m above the surface of the ground. Similarly, humid and dry conditions are defined by a lower and a higher saturation deficit (S.D.), respectively. Cool, humid conditions are found in the open shade where only diffuse solar radiation is received. In high reed vegetations on wet soil, temperatures can lie 8°C below that of the free atmosphere and humidity is close to the saturation point. Warm and humid conditions are found in thin vegetations on damp soil with a temperature excess of up to 10°C and a strongly reduced S.D. In dry grassland, air temperatures 1 cm above the ground are up to 20°C higher and S.D. up to 40 mm Hg higher than at a height of 1.50 m. On suitably oriented slopes covered with dark organic material, surface temperatures can reach 50°C above the air temperature.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

7.
Summary Changes in the stem diameter of well-watered seedlings of Norway spruce [Picea abies (L.) Karst.] in a climate chamber were registered using laser technique. Pronounced, reversible changes in stem diameter (maximum 80 m) occurred in connection with shifts between dark and light (280 W/m2) conditions. Diurnal variation in stem diameter (50 m) continued unchanged, in terms of amplitude and phase, after the entire needle mass had been removed. It was found that nearly all of the diurnal variation in stem diameter was caused by changes in relative air humidity at the stem surface. The relationship between stem diameter change and relative air humidity was investigated at three temperatures (5, 15, and 25° C) over a range (40–95%) of relative humidities. In addition, the effect of altering the air temperature (range: 5–25°C) on stem diameter change at a constant relative air humidity (85%) was studied.  相似文献   

8.
Summary Leaf gas exchange of Vigna unguiculata was influenced by short-term (day-to-day) changes in soil temperature and the response depended upon the aerial environment. When aerial conditions were constant at 30° C leaf temperature, high air humidity and moderate quantum flux, CO2 assimilation rate and leaf conductance increased with increases in soil temperature from 20 to 35° C, and this response was reversible. Decreases in CO2 assimilation rate and leaf conductance were observed at root temperatures above 30° C when root temperatures were increased from 20° C to 40° C and when air humidity was decreased in steps during the day. In contrast, varying soil temperatures between 20 to 35° C had no influence on gas exchange when shoots were subjected to a wide range of temperatures during each day.The gain ratio A/E remained constant at different air humidities when root temperature was less than or equal to 30° C indicating optimal gas exchange regulation, but changed with humidity at higher root temperatures. Leaf conductance responded independently from leaf water potential which remained relatively constant during individual experiments.The results indicate that plant responses to high root temperatures may have relevance to plant performance in semi-arid environments. They also illustrate the importance of controlling soil temperatures when studying the responses of potted plants in controlled aerial environments.Dedicated to K.F. Springer  相似文献   

9.
Summary Plant water potential, osmotic potential, stomatal resistance, leaf temperature, soil temperature, height, dry weight, and nutrient composition of winter wheat (Triticum aestivum L. em. Thell. Osage) grown with electromagnets 10 cm long were measured to determine the effect of magnets on water relations, temperature, and growth. Plants grew in 15-cm diameter pots in a growth room for 44 days with the magnets, which had 0, 5, 15, 25, 50, 125, or 250 ampere-turns. Plants grown with few ampere-turns (5–25) had higher water and osmotic potentials, lower stomatal resistances, were taller, had a higher dry weight, and a higher nitrogen concentration than control plants or plants grown with many ampere-turns (250). Leaf and soil temperatures of controls tended to be less than those of plants and soil with magnets. Calculations showed that magnets with 5–25 ampere-turns and 50–250 ampere-turns generated 0.86 and 0.43 cal/s, respectively. The latter value agreed with the measured increase in temperature (0.5° C) for soil with 250 ampere-turns. The data indicated that the increased height and dry weight of plants with 5–25 ampere-turns were due to soil heating caused by the magnets and heat produced by the 50–250 ampere-turns was not enough to stimulate growth.  相似文献   

10.
Summary A climate room is described for precise regulation of temperature and humidity. Humidity is regulated by regulation of the dew-point temperature of the air. The ranges for both dew-point and air temperature are from 2°C to 45°C. The precision of regulation for the temperature is ±0.05°C, for the dew-point temperature ±0.1°C. In the climate room very homogeneous temperatures can be obtained (±0.1°C). The relative humidity is homogeneous within ±1%.It is also possible to make air temperature different from floor temperature. The dimensions of the experimental room are 200×50×17 cm.A temperature-regulated nest site for Red Wood Ants is also described.  相似文献   

11.
Summary At temperatures of 20°, 30°, 40°, 50° and 60°C in a Gangetic alluvial soil (G soil, pH 7.6) N-mineralization and nitrification increased with temperature up to 40°C and mineralized N accumulated entirely as nitrate. At 50° and 60°C mineralized N was relatively low and no nitrification occurred. In the Red soil (R soil, pH 5.2) mineralized N increased with temperature up to 40°C, was somewhat less at 50°C and was at a maximum at 60°C. Nitrification was maximum at 30°C but did not occur at 50° and 60°C. In the G soil C-mineralization increased considerably with temperature, whilst in the R soil there were only small differences due to temperature.  相似文献   

12.
弱光胁迫对不同基因型玉米生长发育和产量的影响   总被引:54,自引:5,他引:54  
以不同基因型玉米为材料,在玉米生长发育的3个主要阶段(苗期、穗期、粒期)进行分期遮光试验,研究不同时期弱光胁迫对不同基因型玉米生长发育和产量的影响。结果表明,遮光延缓了玉米叶片的出生速度,使叶片变薄;遮光可以延缓叶片的衰老,但遮光解除后则加速叶片的衰老;遮光造成植株高度增加,但恢复正常光照后,其株高却逐渐低于对照;遮光使干物质积累下降,抽雄吐丝日期推迟,尤其是吐丝日期推迟更多,并使产量降低,但不同基因型玉米不同遮光处理下降程度不同。试验的4个品种中,掖单2 2和豫玉2号受遮光影响较小,而掖单36 38和丹玉13受影响较大,即不同基因型玉米对弱光胁迫的敏感性不同  相似文献   

13.
Summary In a field experiment soil samples buried at the warmer temperature regime nitrified added ammonium faster than soils buried at the cooler temperature regime. Nitrification occurred more rapidly under both regimes in a soil which had developed in a warm climatic zone than in two other soils developed under cooler conditions.The rate of nitrification of added ammonium in soils incubated at 5, 15, 25 and 40°C in the laboratory increased with increase in the temperature up to 25°C in three out of four soils. In the fourth soil nitrification was as active at 40°C as at 25°C. The temperature range for appreciable nitrification to occur in a soil was related to the environmental conditions where the soil was formed.Mineralization of organic nitrogen occurred to a greater extent at 40°C than at three lower incubating temperatures of 5, 15, and 25°C. Rapid and active mineralization was associated with high organic matter and C/N ratio in soils  相似文献   

14.
Jojoba [ Simmondsia chinensis (Link) Schneider] cuttings were grown in pots under constant light intensity and vapour pressure deficit at wir temperatures of 18 and 27°C in climate-controlled cabinets. Leaf conductance and transpiration rate decreased exponentially as the xylen water potential (Ψx) decreased concurrently with the drying out of the soil. At high Ψx'leaf conductance and transpiration rate were much higher at the higher air temperature, and as Ψx declined both parameters decreased more rapidly at 27°C than at 18°C. When soil temperatures were decreased from 27 to 13°C, leaf water potential was not affected at either air temperatures, but transpiration rate was reduced. A linear negative correlation was found between transpiration rates and soil temperatures. It is suggested that the low soil temperature may restrict reducion of water flux in turn reduces stomatal conductance and transpiration without affecting the water potential in the shoot. The releavance of the response to changes in soil or air temperature to the performance of the plant in its semi-arid habitat is discussed.  相似文献   

15.
Even moderate chilling temperatures may cause important modifications in assimilate movement in maize seedlings from the shoot to the roots, but there is no information on long-distance transport of assimilates in plants subjected to vertical gradients of moderately low temperatures in the root zone. Seedlings of a chilling-tolerant (KW1074) and a chilling-sensitive inbred line (CM109) of maize were grown in a system that allowed the maintenance of temperature gradients between the topsoil (0-10 cm) and the subsoil (10-50 cm). After pregrowth at 24C until the third-leaf stage, plants were subjected to chilling-stress regimes for 6 d (17/17/17C, 17/17/12°C, 12/12/12°C, 12/12/17°C, air/topsoil/subsoil). The time taken for the assimilates to enter the phloem from the second leaf increased at low temperatures for both lines, but to a much greater extent in CM109. Although mainly influenced by air and topsoil temperature, low temperature in the subsoil also affected this trait in CM109. The speed of assimilate transport between the second leaf and the mesocotyl in KW1074 was strongly reduced by cool temperatures in the shoot and topsoil as well as by 12°C in the subsoil in CM109, because the latter line had a larger portion of its root system in the subsoil as compared to KW1074. The portion of assimilates allocated to the root decreased at low temperatures in both lines, but to a greater extent in CM109, and was controlled mostly by the subsoil temperature. After rewarming, values of all measured parameters of assimilate transport returned to near pregrowth levels within a few days.Keywords: Assimilate transport, low temperature stress, root growth, vertical soil temperature gradients, Zea mays L.   相似文献   

16.
Egg hatch was greatest (78.33%) for eggs not previously desiccated. A reduction in numbers hatched occurred as the relative humidity at which they were dried decreased. Some eggs hatched (0.67–79.33%) at pH levels of 3.10–10.01 with the highest hatch at pH 5.60. Water temperature greatly affected egg hatch. No hatch occurred until temperatures were above 14°C. A constant 29°C significantly inhibited hatching. Egg hatch increased 13.00 to 43.42% as salinity decreased from 2200 to 9.24 micromhos/cm. As little as 13 mm of flooded soil covering the eggs prevented them from hatching for 14 days. Eighteen percent hatch resulted when soil and eggs were redistributed to a 1 mm soil layer. Egg samples from the same parent, even though treated similarly, often hatched at greatly varying rates and only rarely was hatching 100% within a replication.  相似文献   

17.
Maximum photosynthetic CO2 exchange rates (Pn) of single attached leaves were determined for several cassava cultivars selected from different habitats and grown in pots outdoors at CIAT, Colombia, S.A. Pn rates were in a narrow range of 22 to 26 mol CO2 m–2s–1 for all cultivars tested when measured at high photon flux density, normal air, optimum temperature and with low leaf-air vapor pressure differences. For all tested cultivars (9 cvs.), there was a broad optimum temperature for Pn between 25 to 35°C. At temperatures below and above this range Pn declined in all cultivars with Pn rates reaching 80% of maximum at 20 and 40°C. Pn temperature coefficient (Q10) from 15–25°C was 1.6±0.2 across cultivars. No consistent relation existed between Pn, optimum temperature, and the original habitat.  相似文献   

18.
秸秆带状覆盖对半干旱雨养区冬小麦田地温和产量的影响   总被引:3,自引:0,他引:3  
为了明确秸秆带状覆盖对西北半干旱雨养区冬小麦田地温和产量形成的影响,于2013-2015年连续进行2年定位试验,设不覆盖露地(CK)、全膜覆土穴播(PM)、秸秆带状覆盖(覆盖带和种植带各30 cm,播种3行,SM1)、(覆盖带和种植带各40 cm,播种4行,SM2)、(覆盖带和种植带各50 cm,播种5行,SM3)5个处理.结果表明: 各处理在不同生育时期、不同土层土壤温度存在显著差异.与CK相比,SM1、SM2和SM3处理全生育期0~25 cm土层土壤温度分别比CK显著降低1.0~1.3 ℃、0.7~0.9 ℃和0.7~1.1 ℃.不同时期比较,覆盖处理存在增温和降温的双重效应,秸秆覆盖在苗期-越冬期具有提高地温的作用,返青期-成熟期具有降温效应,增温效应覆膜>秸秆覆盖,而降温效应秸秆覆盖>覆膜.同时,秸秆覆盖降低了全生育期土壤有效积温和日变化幅度,全生育期有效积温较CK降低3.4~33.5 ℃·d,土壤温差较CK降低0.6~2.0 ℃;秸秆覆盖在越冬期平均温度比CK高0.2~0.3 ℃、负积温比CK高0.4~17.0 ℃·d.秸秆覆盖较CK增产11.9%~19.5%,处理间单位面积穗数的差异是引起产量差异的主要结构因素.因此,秸秆带状覆盖适宜在西北雨养区旱地冬小麦产区推广应用.  相似文献   

19.
A. D. Rovira  G. D. Bowen 《Planta》1973,114(2):101-107
Summary The rate of translocation of 14C assimilates from leaves to seminal roots in wheat seedlings was considerably reduced by lowering root temperature from 20° to 10° or 5° although the total translocation of 14C to the roots after 24 h was little affected by temperature. The lowered root temperatures (particularly 5°) resulted in a more uniform distribution of assimilate along the roots than did a temperature of 20°, the ratios of radioactivity/cm in the apical cm, elongating zone, and basal parts of the root after 24 h being 14.0:9.6:1 in 20° roots by contrast with 2.8:1:1 in 5° roots. Temperature effects on assimilate distribution may help explain the observations that for roots grown below 15° ion uptake is sustained in older parts and that roots grown at a low temperature are thicker than roots grown at a higher one.  相似文献   

20.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号