首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The D405N and Y546F mutations of the human lutropin receptor (hLHR) have previously been shown to partially attenuate hCG-stimulated cAMP synthesis despite normal cell surface expression and hCG binding affinity (Min, L. and Ascoli, M. Mol. Endocrinol. 14:1797–1810, 2000). We now show that these mutations each stabilize a resting state of the hLHR. A combined mutant D405N,Y546F is similarly expressed at the cell surface and exhibits normal ligand-binding, but is profoundly signaling impaired. Introduction of hLHR(wt) into cells stably expressing the signaling inactive D405N,Y546F resulted in the attenuation of hCG-stimulated cAMP production by hLHR(wt) even if excess Gs is co-expressed. Similarly, co-expression of D405N,Y546F with hLHR constitutively active mutants (CAMs) attenuated their constitutive activity. Quantitative bioluminescence resonance energy transfer (BRET) analyses demonstrated that D405N,Y546F formed heterodimers with both wt and CAM hLHR. In contrast hLHR(D405N,Y546F) did not heterodimerize with the melanocortin 3 receptor (MC3R) and agonist-stimulated cAMP production through the MC3R was not attenuated when these two receptors were co-expressed. Taken altogether, our data demonstrate that a signaling inactive hLHR mutant (that is trafficked normally to the plasma membrane) attenuates the signaling of the cell surface localized wt or the constitutively active hLHR due to receptor heterodimerization. Our studies, therefore, suggest a novel ramification of GPCR signaling resulting from receptor dimerization.  相似文献   

2.
The analysis of 21 progressive truncations of the C-terminal tail of the rat LH/CG receptor (rLHR) revealed the presence of a region delineated by residues 628-649 that, when removed, enhanced the degradation of the internalized human (h)CG. The analysis of these truncations also revealed the presence of a region delineated by residues 624-631 that, when removed, enhanced the rate of internalization of hCG. Since there is little overlap between these two regions, we conclude that the structural features of the rLHR that mediate internalization and degradation of the internalized hormone are different. Detailed analyses of cells expressing a truncation at Y637 (designated rLHR-t637) showed that the enhanced degradation of hCG observed in the these cells is due to an increase in the rate of transfer of the internalized hCG-rLHR complex from the endosomes to the lysosomes rather than to the enhanced dissociation of the hCG-rLHR complex in the lysosomes.  相似文献   

3.
Kono M  Crouch RK  Oprian DD 《Biochemistry》2005,44(2):799-804
A triple mutant (F86L/T93P/S118T; bovine rhodopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformation that is metarhodopsin-II-like. The pigment is able to activate transducin in the dark, and the ligand-free apoprotein is also able to activate transducin constitutively. The pigment permits protons and chloride ions from solution access to the active site as it displays a pH- and NaCl-dependent absorption spectrum not observed with the wild-type pigment. However, the wild-type properties of light-dependent activity and a pH-independent absorption spectrum are recovered upon reconstitution of the triple mutant with 11-cis-9-demethyl retinal. These results suggest that binding the native chromophore cannot deactivate the protein because of steric interactions between the protein, possibly residue 118, and the 9-methyl group of the chromophore. Furthermore, the absorption spectrum of the 9-demethyl retinal regenerated pigment exhibits a band broader and with lower extinction at the absorption maximum than either the human blue or salamander UV wild-type pigments generated with the same retinal analogue. The broad spectrum appears to be comprised of two or more species and can be well-fit by a sum of scaled spectra of the two wild-type pigments. Binding the chromophore appears to trap the pigment in two or more conformations. The triple mutant reported here represents the first example of a dark-active cone pigment and constitutively active cone opsin.  相似文献   

4.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

5.
A splice variant of human lutropin (LH)/choriogonadotropin (CG)-receptor [hLHR(exon 9)] that lacks exon 9 was previously cloned in the corpus luteum of a woman with a normal menstrual cycle. Supported by a detergent-soluble binding assay and a receptor biotinylation experiment, the receptor binding assay shows hLHR(exon 9) is neither expressed at the cell surface nor has the capability of binding to hCG. In addition, hLHR(exon 9) was confirmed in the endoplasmic reticulum (ER) by endoglycosidase H treatment. A coimmunoprecipitation experiment clearly showed that hLHR(exon 9) and constitutively inactivate mutant-LHRs, which stay in the ER, form an association with the human follitropin (FSH)-receptor (hFSHR). This suggests that in the presence of mutant-LHR, hFSHR, which is trapped in the ER and associated with hLHR(exon 9), is unable to come up to the plasma membrane. This phenomenon is specific among gonadotropin receptors because human TSH receptor failed to be coimmunoprecipitated. Furthermore, this receptor complex attenuated the hFSHR receptor protein level within the cells, which impaired cAMP production. To elucidate the mechanism underlying the decrease in hFSHR protein by this receptor complex, we performed a Percoll fractionation experiment, which indicated that the receptor complex drove hFSHR to the lysosome instead of the plasma membrane. These results reveal a novel mechanism of FSHR expression regulation.  相似文献   

6.
The characteristics of the human B-type platelet-derived-growth-factor (PDGF) receptor expressed in Chinese hamster ovary (CHO) cells, were compared with those of a mutant receptor lacking all but 19 amino acids of the intracellular domain. The transfected wild-type receptor was synthesized as a 160-kDa precursor that was processed to 190 kDa. Each CHO cell expressed 30,000-100,000 receptors which bound PDGF-BB with a Kd of about 0.5 nM. Analysis of PDGF-AB binding yielded non-linear Scatchard plots; the major part of the binding sites had a Kd of 6 nM. PDGF-AA was not bound. The receptors expressed in CHO cells were down-regulated after binding of PDGF-BB, and mediated degradation of 125I-PDGF-BB with similar efficiency as PDGF-B-type receptors in human fibroblasts. The transfected receptor also transduced a mitogenic signal. The mutant receptor was synthesized as a 90-kDa precursor and was processed to 120 kDa with a slightly faster rate than the wild-type receptor. Cells expressing the mutant receptor generally had around 10(6) ligand-binding sites/cell, with a Kd for binding of PDGF-BB of 3 nM. The mutant receptor, which did not transduce a mitogenic response, mediated degradation of 125I-PDGF-BB, albeit less efficiently compared to the wild-type receptor. In contrast to the wild-type receptor, it was down-regulated only to a limited extent and not degraded in response to ligand binding. These findings indicate a role for the intracellular part of the receptor, not only in mitogenic signaling, but also in receptor internalization and intracellular routing.  相似文献   

7.
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form.  相似文献   

8.
9.
The human lutropin receptor (hLHR) plays a pivotal role in reproductive endocrinology. A number of naturally occurring mutations of the hLHR have been identified that cause the receptor to become constitutively active. To gain further insights into the structural basis for the activation of the hLHR by activating mutations, we chose to examine a particularly strong constitutively activating mutation of this receptor, L457R, in which a leucine that is highly conserved among rhodopsin-like G protein-coupled receptors in helix 3 has been substituted with arginine. Using both disruptive as well as reciprocal mutagenesis strategies, our studies demonstrate that the ability of L457R to stabilize an active form of the hLHR is because of the formation of a salt bridge between the replacing amino acid and Asp-578 in helix 6. Such a lock between the transmembrane portions of helices 3 and 6 is concurrent with weakening the connections between the cytosolic ends of the same helices, including the interaction found in the wild-type receptor between Arg-464, of the (E/D)R(Y/W) motif, and Asp-564. This structural effect is properly marked by the increase in the solvent accessibility of selected amino acids at the cytosolic interfaces between helices 3 and 6. The integrity of the conserved amino acids Asn-615 and Asn-619 in helix 7 is required for the transfer of the structural change from the activating mutation site to the cytosolic interface between helices 3 and 6. The results of in vitro and computational experiments further suggest that the structural trigger of the constitutive activity of the L457R mutant may also be responsible for its lack of hormone responsiveness.  相似文献   

10.
In the mushroom Coprinus cinereus, the multiallelic B mating type genes are predicted to encode a large family of seven-transmembrane domain receptors and CaaX-modified pheromones. We have shown that a single amino acid change Q229P in transmembrane domain VI of one receptor confers a self-compatible mating phenotype. Using a heterologous yeast assay, we have demonstrated that this C.cinereus pheromone receptor is a G-protein-coupled receptor and that the Q229P mutation is constitutively activating. A C.cinereus pheromone precursor was processed to an active species specifically in yeast MATa cells and activated the co-expressed wild-type receptor. Yeast cells expressing the wild-type receptor were used to test the activity of synthetic peptides, enabling us to predict the structure of the mature C.cinereus pheromone and to show that the Q229P mutation does not compromise normal receptor function.  相似文献   

11.
Caspase-14 is a cysteine endoproteinase that is expressed in the epidermis and a limited number of other tissues. It is activated during keratinocyte differentiation by zymogen processing, but its precise function is unknown. To obtain caspase-14 for functional studies, we engineered and expressed a constitutively active form of human caspase-14 (Rev-hC14) in Escherichia coli and cultured mammalian cells. Rev-hC14 required no proteolytic processing for activity, showed strong activity against the caspase substrate WEHD, and was inhibited by the pan-caspase inhibitor zVAD-fmk. Mammalian cells that expressed active caspase-14 showed normal cell adherence and morphology. Using positional scanning of synthetic tetrapeptide libraries, we determined the substrate preference of human caspase-14 to be W (or Y)-X-X-D. These studies affirm that caspase-14 has a substrate specificity similar to the group I caspases, and demonstrate that it functions in a distinct manner from executioner caspases to carry out specific proteolytic events during keratinocyte differentiation.  相似文献   

12.
The human lutropin receptor (hLHR) is a G protein-coupled receptor (GPCR) that plays an essential role in reproductive physiology. The present studies were undertaken to determine whether the hLHR self-associates. We show that high molecular weight complexes of the hLHR can be co-immunoprecipitated from 293 cells transfected with differentially tagged hLHRs. These complexes are detected only in extracts from cells that have been co-transfected and not in extracts combined from cells expressing only one form of tagged hLHR, confirming the in vivo self-association of the receptor. In transiently transfected cells, in which a small percentage of cells overexpress hLHR and most of the hLHR is located intracellularly in the ER, the self-associated hLHR is composed predominantly of immature hLHR. When cells were transiently co-transfected with wild-type hLHR and a misfolded mutant of the hLHR, a physical association of the ER-localized misfolded mutant with the immature hLHR was observed, resulting in a decreased cell surface expression of the wild-type receptor. In contrast, in stably transfected cells, where the majority of cells express receptor and there is much less intracellular accumulation of hLHR, the self-associated forms of the hLHR are composed predominantly of cell surface receptor. The abundance of cell surface hLHR dimers and oligomers, as detected on SDS gels, is increased further upon human choriogonadotropin treatment of the stably transfected cells. In addition to documenting the self-association of cell surface hLHR, our results underscore the importance of the cellular distribution of recombinant GPCR as it relates to the nature of the GPCR dimerization and oligomerization.  相似文献   

13.
G protein-coupled receptors have a common structural motif of seven transmembrane alpha-helices and are classified into different families showing no sequence similarity. Extensive studies have been conducted on the structure-function relationship in family 1 receptors, but those in other families have not been well studied. In this study, to investigate the molecular basis leading to the G protein activation by metabotropic glutamate receptor (mGluR), the member of family 3, we searched for the amino acid residues responsible for the G protein activation in the second cytoplasmic loop, which was thought to be the main G protein binding region. Analyses of the systematical mutations of Gi/Go-coupled mGluR8 revealed the presence of a constitutively active mutation in the C-terminal region of the second loop. The corresponding mutation in the second loop of Gq-coupled mGluR1 also exhibited high agonist-independent activity. These results indicate that there is a common constitutive active mutation site regardless of mGluR subtypes, suggesting that the structural change of the junction between the second cytoplasmic loop and helix IV is strongly linked to the formation of the active state.  相似文献   

14.
As constitutively active mutants (CAMs) mimic an active conformation, they can be used to characterize the process of G protein-coupled receptor activation. Here, we used CAMs to study the link between activation and internalization of the angiotensin II AT(1A) receptor. The cellular localization of fluorescently tagged N111A, I245T, and L305Q mutants was determined by confocal microscopy. In the absence of ligand, CAMs were mostly located in intracellular vesicles, whereas the wild-type AT(1A) was found at the cell surface. After 2 h incubation with inverse agonist, losartan, CAMs were translocated to the plasma membrane. Similar observations were made in H295, a human adrenocortical cell line which expresses physiologically the AT(1) receptor. This phenomenon, which was not dependent on protein synthesis and the pharmacology and kinetics of which were similar to the recycling of the wild-type receptor, was called "externalization". After externalization and losartan removal, the L305Q CAM underwent rapid ligand-independent endocytosis, with the same kinetics and temperature sensitivity as the angiotensin II-induced internalization of the wild-type AT(1A). Moreover, the addition of a second mutation known to block internalization (Delta 329 truncation) prevented intracellular localization of the CAM. These data show that AT(1A) CAMs are constitutively and permanently internalized and recycled. This mechanism is different from the down-regulation observed for CAMs of other G protein-coupled receptors and thus defines a new paradigm for the cellular regulation of CAMs.  相似文献   

15.
Using the cre-loxP recombination system, we generated a line of mice expressing a constitutively active catalytic subunit of Protein Kinase A (PKA) in a temporally and spatially regulated fashion. In the absence of cre recombinase the modified catalytic subunit allele is functionally silent, but after recombination the mutant allele is expressed, resulting in enhanced PKA effects at basal cAMP levels. Mice expressing the modified protein in hepatocytes using albumin-cre transgenics show defects in glucose homeostasis, glycogen storage, fructose 2,6-bisphosphate levels, and induction of glucokinase mRNA during feeding. Similar to animals lacking glucokinase in the liver (Postic et al.: J Biol Chem 274:305-315, 1999), these mice also have defects in glucose-stimulated insulin secretion, a hallmark of Type II diabetes. The widespread expression of PKA and the involvement of this kinase in a myriad of signaling pathways suggest that these animals will provide critical tools for the study of PKA function in vivo.  相似文献   

16.
Lysophosphatidic acid (LPA) is an extracellular signaling lipid that regulates cell proliferation, survival, and motility of normal and cancer cells. These effects are produced through G protein-coupled LPA receptors, LPA(1) to LPA(5). We generated an LPA(1) mutant lacking the SerValVal sequence of the C-terminal PDZ-binding domain to examine the role of this domain in intracellular signaling and other cellular functions. B103 neuroblastoma cells expressing the mutant LPA(1) showed rapid cell proliferation and tended to form colonies under serum-free conditions. The enhanced cell proliferation of the mutant cells was inhibited by exogenous expression of the plasmids inhibiting G proteins including G(betagamma), G(alphai) and G(alphaq) or G(alpha12/13), or treatment with pertussis toxin, phosphoinositide 3-kinase (PI3K) inhibitors or a Rho inhibitor. We confirmed that the PI3K-Akt and Rho pathways were intrinsically activated in mutant cells by detecting increases in phosphorylated Akt in western blot analyses or by directly measuring Rho activity. Interestingly, expression of the mutant LPA(1) in non-tumor mouse fibroblasts induced colony formation in a clonogenic soft agar assay, indicating that oncogenic pathways were activated. Taken together, these observations suggest that the mutant LPA(1) constitutively activates the G protein signaling leading to PI3K-Akt and Rho pathways, resulting in enhanced cell proliferation.  相似文献   

17.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor that plays an essential role in regulating energy homeostasis. Defects in MC4R are the most common monogenic form of obesity, with about 170 distinct mutations identified in human. In addition to the conventional Gs-stimulated adenylyl cyclase pathway, it has been recently demonstrated that MC4R also activates mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2). Herein, we investigated the potential of four MC4R ligands that are inverse agonists at the Gs-cAMP signaling pathway, including agouti-related peptide (AgRP), MCL0020, Ipsen 5i and ML00253764, to regulate ERK1/2 activation (pERK1/2) in wild type and six naturally occurring constitutively active mutant (CAM) MC4Rs. We showed that these four inverse agonists acted as agonists for the ERK1/2 signaling cascade in wild type and CAM MC4Rs. Three mutants (P230L, L250Q and F280L) had significantly increased pERK1/2 level upon stimulation with all four inverse agonists, with maximal induction ranging from 1.6 to 4.2-fold. D146N had significantly increased pERK1/2 level upon stimulation with AgRP, MCL0020 or ML00253764, but not Ipsen 5i. The pERK1/2 levels of H76R and S127L were significantly increased only upon stimulation with AgRP or MCL0020. In summary, our studies demonstrated for the first time that MC4R inverse agonists at the Gs-cAMP pathway could serve as agonists in the MAPK pathway. These results suggested that there were multiple activation states of MC4R with ligand-specific and/or mutant-specific conformations capable of differentially coupling the MC4R to distinct signaling pathways.  相似文献   

18.
19.
The diverse cellular changes brought about by the expression of a constitutively active receptor are poorly understood. QBI-human embryonic kidney 293A cells stably expressing the constitutively active N111G-AT(1) receptor (N111G cells) showed elevated levels of inositol phosphates and frequent spontaneous intracellular Ca(2+) oscillations. Interestingly, Ca(2+) transients triggered with maximal doses of angiotensin II were much weaker in N111G cells than in wild-type cells. These blunted responses were observed independently of the presence or absence of extracellular Ca(2+) and were also obtained when endogenous muscarinic and purinergic receptors were activated, revealing a heterologous desensitization process. The desensitized component of the Ca(2+) signaling cascade was neither the G protein G(q) nor phospholipase C. The intracellular Ca(2+) store of N111G cells and their mechanism of Ca(2+) entry also appeared to be intact. The most striking adaptive response of N111G cells was a down-regulation of their inositol 1,4,5-trisphosphate receptor (IP(3)R) as revealed by reduced IP(3)-induced Ca(2+) release, lowered [(3)H]IP(3) binding capacity, diminished IP(3)R immunoreactivity, and accelerated IP(3)R degradation involving the lysosomal pathway. Treatment with the inverse agonist EXP3174 reversed the desensitized phenotype of N111G cells. Down-regulation of IP(3)R represents a reversible adaptive response to protect cells against the adverse effects of constitutively active Ca(2+)-mobilizing receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号