首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in protein synthesis during myogenesis in a clonal cell line   总被引:11,自引:0,他引:11  
Methods of quantitative two-dimensional gel electrophoresis have been used to study the changes in protein synthesis that occur during myogenic differentiation in the L6 clonal line of rat skeletal muscle cells. Pure populations of myoblasts were obtained by maintaining the cells at subconfluent densities, and virtually pure populations of fused myotubes have been obtained by sedimentation at 1 × gravity through a serum gradient. The gel analysis reveals major qualitative differences between myoblasts and myotubes, as well as numerous quantitative changes. Both the α and the β forms of tropomyosin and the LC2 myosin light chain were increased in rate of synthesis by at least 1000-fold during myogenesis. Other proteins were detectable in myoblasts but were not synthesized at a detectable rate in myotubes. One of these is a form of tropomyosin which comigrates under several electrophoretic conditions with smooth muscle tropomyosin. Another protein, which is repressed in rate of synthesis by at least 1000-fold during myogenesis, appears to be a major form of collagen. Computer analysis has been used to analyze in detail a particular region containing about 300 spots from the two-dimensional patterns representing protein synthesis in L6 myoblasts, L6 myotubes, and a rat nerve cell line. Quantiative comparisons have shown that, with respect to this set of proteins, the L6 myoblasts and myotubes are no more alike at the level of protein synthesis than are L6 myoblasts and the cells of the nerve line. Therefore, these studies show that L6 differentiation involves not only the qualitative switching on and off of major gene products but also the quantitative alteration of synthetic rates of many of the common proteins.  相似文献   

2.
The synthesis of the heavy chain subunit of myosin has been studied in breast muscle myoblasts from embryos of the Japanese quail, Coturnix coturnix japonica, during differentiation of these cells in culture. Specifically, these experiments were done to examine the roles of myoblast fusion and the regulation of myoblast cell division in the control of myosin heavy chain synthesis.The rates of myosin heavy chain synthesis have been quantitated in cultures of fusing myoblasts by measurement of the incorporation of radioactive leucine and valine precursors into myosin heavy chain, and simultaneous determination of the intracellular specific activities of these radioactive amino acids. These measurements demonstrate that, prior to fusion, dividing myoblasts synthesize little, if any, myosin heavy chain, but that during the period of myoblast fusion, myosin heavy chain synthesis becomes activated at least 50 to 100-fold. Myosin heavy chain synthesis was also measured in mononucleated myoblasts inhibited from fusing by the presence of EGTA in the culture medium. These experiments demonstrate that myosin synthesis can be activated in mononucleated myoblasts to reach rates similar to those attained in fused myoblasts. This activation occurs under conditions in which EGTA-inhibited myoblasts were induced to withdraw from the cell division cycle by reducing the concentrations of the serum and embryo extract components of the culture medium or by prior “conditioning” of standard growth medium.These experiments, therefore, establish that the activation of myosin synthesis in breast muscle myoblasts does not require fusion, but indicate that activation is co-ordinated with the withdrawal of myoblasts from the cell division cycle.  相似文献   

3.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

4.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

5.
6.
7.
The synthesis of contractile protein mRNAs has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Eight contractile protein mRNAs were identified by translation of total cellular RNA isolated from differentiated myofibers in wheat germ and reticulocyte lysates. Products of the translation systems were fractionated by two-dimensional gel electrophoresis, and incorporation of [35S]methionine into individual contractile proteins was quantitated by computerized densitometry of autoradiograms. These translation assay systems were used to quantitate levels of contractile protein mRNAs in cultures of myoblasts undergoing highly synchronous differentiation. Our results show that dividing myoblasts contain very little, if any, translatable contractile protein mRNA. The mRNAs coding for myosin heavy chain, the musclespecific actin, three myosin light chains, two tropomyosin subunits, and one troponin subunit begin to coordinately accumulate at fusion, when contractile protein synthesis is activated. Their levels increase 50- to 200-fold during the next 30 hr, paralleling increases in the rates of contractile protein synthesis. These results indicate that the contractile protein mRNAs accumulate coordinately during myoblast differentiation and that contractile protein synthesis is regulated by changes in the levels of these mRNAs.  相似文献   

8.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

9.
When cultured in low serum-containing growth medium, the mouse C(2)C(12) cells exit cell cycle and undergo a well-defined program of differentiation that culminates in the formation of myosin heavy chain-positive bona fide multinucleated muscle cells. To gain an understanding into this process, we compared total, membrane- and nuclear-enriched proteins, and phospho-proteins from the proliferating C(2)C(12) cells and the fully differentiated myotubes by the combined methods of two-dimensional PAGE, quantitative PDQuest image analysis, and MS. Quantification of more than 2,000 proteins from C(2)C(12) myoblasts and myotubes revealed that a vast majority of the abundant proteins appear to be relegated to the essential, housekeeping and structural functions, and their steady state levels remain relatively constant. In contrast, 75 proteins were highly regulated during the phenotypic conversion of rapidly dividing C(2)C(12) myoblasts into fully differentiated, multi-nucleated, post-mitotic myotubes. We found that differential accumulation of 26 phospho-proteins also occurred during conversion of C(2)C(12) myoblasts into myotubes. We identified the differentially expressed proteins by MALDI-TOF-MS and LC-ESI-quadrupole ion trap MS/MS. We demonstrate that more than 100 proteins, some shown to be associated with muscle differentiation for the first time, that regulate inter- and intracellular signaling, cell shape, proliferation, apoptosis, and gene expression impinge on the mechanism of skeletal muscle differentiation.  相似文献   

10.
Changes in myosin and myosin light chain kinase during myogenesis   总被引:1,自引:0,他引:1  
Myosins and myosin light chain kinases have been isolated from a cloned line of myoblasts (L5/A10) as this cell line undergoes differentiation toward adult muscle. At least three myosin isozymes were obtained during this developmental process. Initially a nonmuscle type of myosin was found in the myoblasts. The molecular weights of the myoblast light chains were 20 000 and 15 000. Myosin isolated from early myotubes had light chains with molecular weights of 20 000 and 19 500. Myosin isolated from myotubes which contained sarcomeres had light chains with molecular weights of 23 000, 18 500, and 16 000. This last myosin was similar in light chain complement to adult rat thigh muscle. Two forms of the myosin light chain kinase activity were detected: a calcium-independent kinase in the myoblasts and a calcium-dependent kinase in the myotubes with sarcomeres. No myosin light chain kinase activity was detected in the early myotubes.  相似文献   

11.
12.
Temporal appearance of satellite cells during myogenesis.   总被引:3,自引:0,他引:3  
In this study, differences between fetal and adult myoblasts in clonal and high density culture have been used to determine when adult myoblasts can first be detected during avian development. The results indicate that avian adult myoblasts are apparent as a distinct population of myoblasts during the midfetal stage of development. Three different criteria were used to differentiate fetal and adult myoblasts and demonstrate when adult myoblasts become a major proportion of the myoblast population: (1) differences in slow myosin heavy chain 1 (MHC1) isoform expression, (2) initiation of DNA synthetic activity, and (3) average myoblast length. Fetal chicken (ED10-12) pectoralis muscle (PM) myoblasts form myotubes that express slow MHC1 after prolonged culture, while adult chicken PM myoblasts do not. Fetal avian myoblasts were active in DNA synthesis and large when first isolated, reaching peak rates of synthesis by 24 hr in culture, while adult myoblasts were inactive in DNA synthesis and small when first isolated, only reaching peak rates of DNA synthesis and size at 3 days of incubation. A dramatic decrease in the percentage of muscle colonies with fibers that expressed slow MHC1 was observed between the midfetal stage and hatching in the chicken, along with a corresponding decrease in myoblast DNA synthetic activity and average length during this same period in both the chicken and the quail. Myoblast activity and average length increased again 3-4 days posthatch and a small transient increase in the number of slow MHC1-expressing clones was also associated with the massive growth of muscle that occurs in the neonatal bird. We conclude that adult myoblasts are present as a distinct population of myoblasts at least as early as the midfetal stages of avian development.  相似文献   

13.
Stimulation and inhibition of myoblast differentiation by hormones   总被引:3,自引:0,他引:3  
The growth and differentiation of L6 myoblasts are subject to control by two proteins secreted by cells of the Buffalo rat liver line. The first of these, rat insulinlike growth factor-II (formerly designated multiplication stimulating activity) is a potent stimulator of myoblast proliferation and differentiation, as well as associated processes such as amino acid uptake and incorporation into protein, RNA synthesis, and thymidine incorporation into DNA. In addition, this hormone causes a significant decrease in the rate of protein degradation. All of these actions seem to be attributable to a single molecular species, although their time courses and sensitivity to the hormone differ substantially. The second protein, the differentiation inhibitor (DI), is a nonmitogenic inhibitor of all tested aspects of myoblast differentiation, including fusion and the elevation of creatine kinase. Indirect immunofluorescence experiments demonstrated that DI also blocks accumulation of myosin heavy chain and myomesin. Upon removal of DI after 72 h incubation, all of these effects were reversed and normal myotubes containing the usual complement of muscle-specific proteins were formed. Thus, this system makes it possible to achieve specific stimulation or inhibition of muscle cell differentiation by addition of purified proteins to cloned cells in serum-free medium.  相似文献   

14.
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5- bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.  相似文献   

15.
The expression of RNA sequences coding for myofibrillar proteins has been followed during terminal differentiation in a mouse skeletal muscle cell line. Cloned complementary DNA probes hybridizing with the actins, skeletal muscle α-actin, myosin heavy chain and the myosin alkali light chains were employed in Northern blotting experiments with total cellular poly (A)-containing RNA extracted from the cultures at different times after plating. At the same times, parallel cultures were pulse-labelled with [35S]methionine and the pattern of newly synthesized proteins was analysed by two-dimensional gel electrophoresis. Synthesis of skeletal muscle α-actin and of the myosin alkali light chains (LClemb, LC1, LC3) was not detectable in dividing myoblast cultures. From the onset of cell fusion, the synthesis of myosin heavy chain, LClemb and α-actin increases with similar kinetics. Synthesis of LC3 (and trace amounts of LC1F) is detectable and subsequently increases at later stages of myotube formation. The corresponding messenger RNAs coding for myosin heavy chain and skeletal muscle α-actin are first detectable immediately before the initiation of myofibrillar protein synthesis. mRNAs coding for the non-muscle actins are accumulated in myoblasts and diminish after cell fusion. Comparisons between muscle mRNAs depend on the relative sensitivities of the different probes, reflecting mainly their homology with the isoform of the actin or myosin multigene family expressed. Quantitative analysis of Northern blots gives an estimated increase in skeletal muscle α-actin mRNA, with an homologous probe, of at least 130-fold with a minimum level of detection of 40 to 80 molecules per cell. Accumulation of this species and of the myosin heavy chain mRNA follows similar kinetics. mRNA coding for LC3, the principal myosin light chain detected with the probe, appears to accumulate to a lesser extent initially, paralleling synthesis of the corresponding protein. These results using cloned probes demonstrate a close temporal correlation between muscle mRNA accumulation and protein synthesis during terminal myogenesis in this muscle line.  相似文献   

16.
17.
Antibodies to muscle-specific proteins were used in immunofluorescence to monitor the development of skeletal muscle during mouse embryogenesis. At gestation day (g.d.) 9 a single layer of vimentin filament containing cells in the myotome domain of cervical somites begins to stain positively for myogenic proteins. The muscle-specific proteins are expressed in a specific order between g.d. 9 and 9.5. Desmin is detected first, then titin, then the muscle specific actin and myosin heavy chains, and finally nebulin. At g.d. 9.5 fibrous desmin structures are already present, while for the other myogenic proteins no structure can be detected. Some prefusion myoblasts display at g.d. 11 and 12 tiny and immature myofibrils. These reveal a periodic pattern of myosin, nebulin, and those titin epitopes known to occur at and close to the Z line. In contrast titin epitopes, which are present in mature myofibrils along the A band and at the A-I junction, are still randomly distributed. We propose, that the Z line connected structures and the A bands (myosin filaments) assemble independently, and that the known interaction of the I-Z-I brushes with the A bands occurs at a later developmental stage. After fusion of myoblasts to myotubes at g.d. 13 and 14 all titin epitopes show the myofibrillar banding pattern. The predominantly longitudinal orientation of desmin filaments seen in myoblasts and in early myotubes is transformed at g.d. 17 and 18 to distinct Z line connected striations. Vimentin, still present together with desmin in the myoblasts, is lost from the myotubes. Our results indicate that the putative elastic titin filaments act as integrators during skeletal muscle development. Some developmental aspects of eye and limb muscles are also described.  相似文献   

18.
The L6E9 myoblast cell line can be grown as individual cells in "growth medium," or can be induced to fuse and differentiate to form multinucleated myotubes either at 37 C or at 40.5 C in "differentiation medium." It has previously been shown that myoblasts with infected Trypanosoma cruzi (Brazil strain) cannot differentiate to form myotubes. Moreover, the mRNAs for contractile proteins are not induced in these infected cells. Infected myoblasts grown in "differentiation medium" at 37C were unable to differentiate by 7 days. The infection was maintained at 100%, and the number of trypomastigotes in the supernatant increased with time (peak greater than 10(6)/ml). At 40.5C, however, infected myoblasts gradually eliminated their infection. The percentage of parasitized cells was reduced to less than 1% by the 7th day of observation. There was also a decrease in the number of trypomastigotes in the supernatant. Moreover, significant fusion was observed in these cultures by morphological criteria. Using 32P-labeled recombinant DNA probes, it was shown that, at 37C, there was an inhibition of mRNAs for muscle-specific contractile proteins (myosin heavy chain and alpha-actin), whereas nonspecific mRNAs were not inhibited. Furthermore, infected myoblasts exposed to 40.5C exhibited no inhibition of mRNAs for myosin heavy chain and alpha-actin. Myoblasts cleared of their infection could readily be reinfected. This study demonstrates that the inhibition of muscle differentiation induced by T. cruzi is reversible when cultures are exposed to elevated temperatures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号