首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Summary

In our study of spermiogenesis in the lined chiton Tonicella lineata, we traced the formation and migration of small Golgi vesicles to the apex of the sperm, where they fused to form an apical granule. This apical granule and other Golgi secretions tested positively for acid phosphatase. In preliminary experiments on fertilization, sperm swam inside open hull (chorion) cupules down to the surface of the egg and penetrated it. No micropyle was observed. Serial 1μm sections of eggs fixed during fertilization demonstrated that the sperm nucleus had penetrated not only the hull but also the vitelline and oocyte membranes. Serial thin sections showed that the tip of the anterior filament of the sperm had fused with a single microvillus of the oocyte membrane, creating a membranous tube through which the nucleus had entered the egg cortex. We suggest that the apical granule of chiton sperm is an acrosome that enables the nucleus to penetrate the egg membranes.  相似文献   

2.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

3.
Glycobiology of sperm-egg interactions in deuterostomes   总被引:4,自引:0,他引:4  
The process of fertilization begins when sperm contact the outermost egg investment and ends with fusion of the two haploid pronuclei in the egg cytoplasm. Many steps in fertilization involve carbohydrate-based molecular recognition between sperm and egg. Although there is conservation of gamete recognition molecules within vertebrates, their homologues have not yet been discovered in echinoderms and ascidians (the invertebrate deuterostomes). In echinoderms, long sulfated polysaccharides act as ligands for sperm receptors. Ascidians employ egg coat glycosides that are recognized by sperm surface glycosidases. Vertebrate egg coats contain zona pellucida (ZP) family glycoproteins, whose carbohydrates bind to sperm receptors. Several candidate sperm receptors for vertebrate ZP proteins have been identified and are discussed here. This brief review focuses on new information concerning fertilization in deuterostomes (the phylogenetic group including echinoderms, ascidians, and vertebrates) and highlights protein-carbohydrate interactions involved in this process.  相似文献   

4.
During fertilization in Drosophila, a single 1.75 mm long sperm enters the egg through the anterior end. Using a sperm-specific monoclonal antibody and indirect immunofluorescence of whole fixed eggs and embryos, intracellular interactions between the sperm and egg are examined as they occur inside the fertilized egg. The sperm nucleus remains attached to the axoneme throughout the entire process of fertilization including the stages of pronuclear maturation, pronuclear fusion and karyogamy indicating an intracellular function for the sperm during these stages. Optical sections and three-dimensional reconstructions of whole mount specimens reveal that a stereotypically folded structure forms during fertilization strongly suggesting that this structure positions the male pronucleus in the proper region of the egg in anticipation of pronuclear fusion. This, and the appearance of regional structural changes in the sperm upon entry suggests that sperm are localized via specific interactions with the maternal cytoplasm. Following fertilization and during the ensuing cleavage divisions, the sperm remains intact and localized at the anterior end of the egg. During cellular blastoderm formation the sperm tail is sequestered into the anterior yolk area where it continues to persist well into embryonic development. This structural analysis identifies intracellular sperm/egg interactions as an important aspect of fertilization, and provides a unique model system for the study of sperm/egg interactions not presently available in other systems.  相似文献   

5.
The effect of alcohol on the fertilizing ability of both human and hamster spermatozoa was examined by an in vitro fertilization assay using hamster ova. Spermatozoa were incubated in capacitating media for 3 hr (hamster sperm) and 4 hr (human sperm). Hamster ova were inseminated with preincubated sperm and were examined after 2 to 3 hr. Ethanol was added to the capacitating media at concentrations of 25, 50, 100, 200, and 400 mg%. Fertilization of zona-free hamster eggs by human spermatozoa was reduced from 49.6% in no alcohol to 16.7% in 400 mg% ethanol. Fertilization of hamster eggs by hamster sperm revealed a reduction from 63.6% to 33.7% in cumulus-intact eggs and from 65.8% to 10.8% in cumulus-free eggs in the presence of ethanol at 400 mg%. Hamster sperm acrosome reaction was reduced from 47% to 12%. When these hamster sperm with reduced acrosome reaction were placed with zona-free hamster eggs, the 100% fertilization rate was not reduced; however, the fertilization index, which reflects the number of swelling sperm heads per egg, was reduced from 8.5 to 1.8. This suggests that as little as 12% of the sperm with an acrosome reaction is sufficient to fertilize 100% of the zona-free eggs. If ethanol was added to the insemination media only, there was no inhibition of fertilization by human sperm or hamster sperm that had been previously capacitated in an ethanol-free media. Removal of the ethanol from the preincubated sperm produced fertilization at control levels; thus the inhibitory effect is reversible. These results indicate that ethanol may affect fertilization by an inhibition of the capacitation and/or acrosome reaction process.  相似文献   

6.
7.
Recent in vitro fertilization studies have revealed female and male × female interaction effects on the probability of fertilization. These findings suggest a mechanism of cryptic female choice via sperm–egg interactions. The egg jelly of anuran amphibians contains proteins that facilitate the chemoattraction and binding of sperm for fertilization. Here we show that egg jelly also influences the onset of motility and swimming velocity of motile sperm in the frog Crinia georgiana. Moreover, we found significant among female variation in the effects of egg jelly on sperm motility. We discuss this finding with respect to male and female effects on nonrandom fertilization observed in this species.  相似文献   

8.
In eutherian mammals billions of sperm are deposited at ejaculation in the female reproductive tract, but only a few thousand enter the oviduct. A few reach the ampulla at the time of fertilization and only one sperm fertilizes the egg. In most mammalian species the lower isthmus of the fallopian tubes has taken over the function of a reservoir in which sperm are stored under conditions that save sperm energy by suppressing motility and increase viability. Close to the time when the egg is ovulated into the ampulla, the sperm undergo a complex sequence of processes, named capacitation. Capacitation is a prerequisite for fertilization, enabling the sperm to recognize the egg and to respond to the egg signals in the appropriate manner. Sperm bind to the egg extracellular matrix, the zona pellucida, and upon binding undergo the acrosome reaction, followed by the passage of the zona pellucida and binding to and fusion with the egg oolemma, thus triggering the embryonic developmental program. The oviduct and the egg itself appear to coordinate sperm function to ensure that two functional competent gametes will meet, leading to fertilization. For the communication between sperm and somatic cells as well as between both gametes the information potential of carbohydrates is utilized, and this event probably prepares the next level of interactions, e.g., capacitation, acrosome reaction, egg binding, and fusion. The current perspective focuses on the role of molecules possibly implicated in sperm-oviduct and sperm-egg interactions. J. Exp. Zool. (Mol. Dev. Evol.) 285:259-266, 1999.  相似文献   

9.
Fertilization involves multiple layers of sperm-egg interactions that lead to gamete fusion and egg activation. There must be specific molecules required for these interactions. The challenge is to determine the identity of the genes encoding these molecules and how their protein products function. The nematode worm Caenorhabditis elegans has emerged as an efficient model system for gene discovery and understanding the molecular mechanisms of fertilization. The primary advantage of the C. elegans system is the ability to isolate and maintain mutants that affect sperm or eggs and no other cells. In this review we describe progress and challenges in the analysis of genes required for gamete interactions and egg activation in the worm.  相似文献   

10.
Analysis of the role of egg integrins in sperm-egg binding and fusion   总被引:2,自引:0,他引:2  
Sperm-egg fusion is believed to be mediated via specific molecular interactions. Integrin alpha6beta1 is a strong candidate for a sperm receptor on the egg plasma membrane. However, the ability of the egg integrin alpha6beta1 to interact with molecules on intact sperm has not yet been proven. In this report, possible involvement of integrin alpha6beta1 in sperm-egg interactions was examined by biochemical and immunocytochemical analyses. To identify egg molecules that specifically interact with sperm, we first incubated sperm with biotin-labeled egg surface proteins. Under this condition, solubilized proteins from eggs inhibited sperm-egg fusion. Western blot analysis under reducing conditions indicated that a major-labeled band of 135 kDa bound to sperm. An immunodepletion experiment using the anti-integrin alpha6 antibody GoH3 indicated that the 135 kDa egg surface molecule that bound to sperm was the integrin alpha6 subunit. To investigate the potential involvement of integrin alpha6beta1 in sperm-egg fusion, we next examined the localization of integrin alpha6 and beta1 subunits before and after fertilization by confocal laser microscopy. At an early stage of sperm-egg fusion, the integrin alpha6 and beta1 subunits were accumulated at the sperm binding site. The frequency of cluster formation was closely related to that of sperm-egg fusion, indicating that integrin receptors are accumulated by sperm destined for fusion. Taken together, these results strongly suggest that the integrin alpha6beta1 is involved in sperm-egg binding leading to fusion via direct association of the integrin alpha6 with sperm.  相似文献   

11.
Fertilization includes a series of cellular interactions culminating with the fusion of gamete membranes, creating a zygote. Two ADAM proteins present on sperm, fertilin beta and cyritestin, drew much attention. However, gene deletion in mice showed that fusion can happen in their absence. The presence of the integrin alpha6beta1 on egg, a putative fertilin beta receptor, is also dispensable. In contrast, sperm lacking Izumo, a molecule with a single Ig domain, are unable to fuse. On the egg side, a role for GPI-anchored molecules has been shown, and in mice lacking both tetraspanins CD9 and CD81 fertilization is completely blocked.  相似文献   

12.
Fertilization is a process involving multiple steps that lead to the final fusion of one sperm and the oocyte to form the zygote. One of the steps, acrosome reaction (AR), is an exocytosis process, during which the outer acrosome membrane fuses with the inner sperm membrane, leading to the release of acrosome enzymes that facilitate sperm penetration of the egg investments. Though AR has been investigated for decades, the initial steps of AR in vivo, however, remain largely unknown. A well elucidated model holds the view that AR occurs on the surface of the zona pellucida (ZP), which is triggered by binding of sperm with one of the ZP glycosylated protein, ZP3. However, this model fails to explain the large number of ‘falsely’ acrosome-reacted sperms found within the cumulus layer in many species examined. With the emerging evidence of cross-talk between sperm and cumulus cells, the potential significance of AR in the cumulus oophorus, the outer layer of the egg, has been gradually revealed. Here we review the acrosome status within the cumulus layer, the cross-talk between sperm and cumulus cells with the involvement of a novel sperm-released factor, NYD-SP8, and re-evaluate the importance and physiological significance of the AR in the cumulus in fertilization.  相似文献   

13.
Mammalian eggs are surrounded by two egg coats: the cumulus oophorus and the zona pellucida, which is an extracellular matrix composed of sulfated glycoproteins. The first association of the spermatozoon with the zona pellucida occurs between the zona glycoprotein, ZP3 and sperm receptors, located at the sperm plasma membrane, such as the 95kDa tyrosine kinase-protein. This association induces the acrosome reaction and exposes the proacrosin/acrosin system. Proacrosin transforms itself, by autoactivation, into the proteolytical active form: acrosin. This is a serine protease that has been shown to be involved in secondary binding of spermatozoa to the zona pellucida and in the penetration of mammalian spermatozoa through it. The zona pellucida is a specific and natural substrate for acrosin and its hydrolysis and fertilization can be inhibited by antiacrosin monoclonal antibodies. Moreover, inin vitrofertilization experiments, trypsin inhibitors significantly inhibits fertilization. The use of the silver-enhanced immunogold technique has allowed immunolocalization of the proacrosin/acrosin system in spermatozoa after the occurrence of the acrosome reaction. This system remains associated to the surface of the inner acrosomal membrane for several hours in human, rabbit and guinea-pig spermatozoa while in the hamster it is rapidly lost. In the hamster, the loss of acrosin parallels the capability of the sperm to cross the zona pellucida. Rabbit perivitelline spermatozoa can fertilize freshly ovulated rabbit eggs and retain acrosin in the equatorial and postacrosomal region. These spermatozoa also show digestion halos on gelatin plates that can be inhibited by trypsin inhibitors. This evidence strongly suggests the involvement of acrosin in sperm penetration through the mammalian zona. Recently it was shown, however, that acrosin would not be essential for fertilization. It is likely, then, that such an important phenomenon in the mammalian reproductive cycle would be ensured though several alternative mechanisms.  相似文献   

14.
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (egg water) for 90-180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO3 and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.  相似文献   

15.
Ocean acidification (OA) poses a major threat to marine organisms, particularly during reproduction when externally shed gametes are vulnerable to changes in seawater pH. Accordingly, several studies on OA have focused on how changes in seawater pH influence sperm behavior and/or rates of in vitro fertilization. By contrast, few studies have examined how pH influences prefertilization gamete interactions, which are crucial during natural spawning events in most externally fertilizing taxa. One mechanism of gamete interaction that forms an important component of fertilization in most taxa is communication between sperm and egg‐derived chemicals. These chemical signals, along with the physiological responses in sperm they elicit, are likely to be highly sensitive to changes in seawater chemistry. In this study, we experimentally tested this possibility using the blue mussel, Mytilus galloprovincialis, a species in which females have been shown to use egg‐derived chemicals to promote the success of sperm from genetically compatible males. We conducted trials in which sperm were allowed to swim in gradients of egg‐derived chemicals under different seawater CO2 (and therefore pH) treatments. We found that sperm had elevated fertilization rates after swimming in the presence of egg‐derived chemicals in low pH (pH 7.6) compared with ambient (pH 8.0) seawater. This observed effect could have important implications for the reproductive fitness of external fertilizers, where gamete compatibility plays a critical role in modulating reproduction in many species. For example, elevated sperm fertilization rates might disrupt the eggs' capacity to avoid fertilizations by genetically incompatible sperm. Our findings highlight the need to understand how OA affects the multiple stages of sperm‐egg interactions and to develop approaches that disentangle the implications of OA for female, male, and population fitness.  相似文献   

16.
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split--ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.  相似文献   

17.
In sedentary externally fertilizing species, direct interactions between mating partners are limited and prefertilization communication between sexes occurs largely at the gamete level. Certain combinations of eggs and sperm often have higher fertilization success than others, which may be contingent on egg‐derived chemical factors that preferentially attract sperm from compatible males. Here, we examine the mechanisms underlying such effects in the marine mussel Mytilus galloprovincialis, where differential sperm attraction has recently been shown to be associated with variation in offspring viability. Specifically, we focus on the sperm surface glycans, an individually unique layer of carbohydrates that moderate self‐recognition and other cellular‐level interactions. In many species egg‐derived factors trigger remarkable changes in the sperm's glycan layer, physiology, and swimming behavior, and thus potentially moderate mate choice at the gamete level. Here, we show that sperm glycan modifications and the strength of acrosome reaction are both dependent on specific male–female interactions (male–female combination). We also find associations between female‐induced sperm glycan changes and the Ca2+ influx into sperm–‐a key regulator of fertilization processes from sperm capacitation to gamete fusion. Together, our results suggest that female‐induced remote regulation of sperm physiology may constitute a novel mechanism of gamete‐level mate choice.  相似文献   

18.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

19.
The mammalian spermatozoon undergoes continuous modifications during spermatogenesis, maturation in the epididymis, and capacitation in the female reproductive tract. Only the capacitated spermatozoa are capable of binding the zona-intact egg and undergoing the acrosome reaction. The fertilization process is a net result of multiple molecular events which enable ejaculated spermatozoa to recognize and bind to the egg's extracellular coat, the zona pellucida (ZP). Sperm–egg interaction is a species-specific event which is initiated by the recognition and binding of complementary molecule(s) present on sperm plasma membrane (receptor) and the surface of the ZP (ligand). This is a carbohydrate-mediated event which initiates a signal transduction cascade resulting in the exocytosis of acrosomal contents. This step is believed to be a prerequisite which enables the acrosome reacted spermatozoa to penetrate the ZP and fertilize the egg. This review focuses on the formation and contents of the sperm acrosome as well as the mechanisms underlying the induction of the acrosome reaction. Special emphasis has been laid on the synthesis, processing, substrate specificity, and mechanism of action of the acid glycohydrolases present within the acrosome. The hydrolytic action of glycohydrolases and proteases released at the site of sperm-zona binding, along with the enhanced thrust generated by the hyperactivated beat pattern of the bound spermatozoon, are important factors regulating the penetration of ZP. We have discussed the most recent studies which have attempted to explain signal transduction pathways leading to the acrosomal exocytosis.  相似文献   

20.
A precise understanding in the functional competence of mammalian sperm is essential to generate clinical advances for the treatment of infertility and novel contraceptive strategies. The fundamental knowledge on the controlling parameters for spermatozoal activation process will help in the identifying the causes in fertilization failure due to male factor as well as in developing male contraceptive methodologies. The defects in the sperm-egg interaction seem to be one of the controlling mechanisms, however, none of the presently available methods for the evaluation of the fertilizing ability of sperm precisely indicates the reason for the failure or the success of sperm entry into egg. Adequate number of motile spermatozoa with normal morphology and timely occurrence of acrosome reaction are presumably the major prerequisites for the penetration through the egg investments. The present communication briefly reviews some of the main features of mammalian sperm which control the success or the failure of fertilization and existing clinical methods indicating the lack of fundamental knowledge on the sub-cellular and molecular aspects of this unique and species-specific cell-cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号