首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of the IS50 R proteins in the promotion and control of Tn5 transposition   总被引:19,自引:0,他引:19  
IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.  相似文献   

2.
The isolation of two multi-resistance transposons, Tn2425 and Tn1831, and their relation to Tn21 and Tn2424, is described. A 1.7 kb segment present in Tn2424 and Tn2425 was identified as an IS element by rec-independent transposition, resulting in a cointegrate structure that carries two direct repeated copies of the IS element. By the isolation of this IS element we demonstrated that transposition is one mechanism leading to sequence variations in Tn21-like structures, especially in the region between the mer operon and the sul gene.  相似文献   

3.
p2 and inhibition of Tn5 transposition.   总被引:9,自引:8,他引:1       下载免费PDF全文
  相似文献   

4.
We have measured the frequency of Tn9 transposition and cointegrate formation in several different ways and have examined the stability of the cointegrates. We have also physically analyzed the structure of 40 independently derived cointegrate molecules. We present evidence here that Tn9, unlike the transposable element Tn3, does not transpose via an obligate cointegrate intermediate. We suggest that transposition of Tn9 leads to two, mutually exclusive, end-products: either direct insertion of the element into a recipient replicon (transposition), or fusion between donor and recipient replicons (cointegrate formation). This conclusion is based on our observations that, while Tn9-mediated cointegrates are very stable, they are formed at a rate lower than the transposition frequency. This finding is discussed in terms of current models for transposition.We also present evidence that clearly demonstrates the compound nature of Tn9. We find that the individual flanking IS1 elements are more active than the entire Tn9 transposon in cointegrate formation. In addition, we find that one IS1 element that is proximal to the cam gene promoter, is more active than the other, and suggest that the difference in activity might be due to differences in nucleotide sequence at their extremities.  相似文献   

5.
Analysis of Tn3 sequences required for transposition and immunity   总被引:10,自引:0,他引:10  
Tn3 is a 5-kb transposon (Tn) with 38-bp inverted terminal repeats (ITR). The two 38-bp terminal sequences are required in cis for Tn3 transposition. In this study, the role of the ITR in Tn3 transposition has been further dissected by the use of various mini-Tn3 Tn's. The transposition frequency of these mini-Tn's demonstrate that Tn3 contains no sequence other than the ITR sequences that are necessary for the first step in transposition; the two terminal repeats must be oriented as ITR for transposition to occur; the outside 34 bp of the ITR are required for transposition; and reducing the distance between the terminal sequences does not affect transposition frequency. Moreover, mutant copies of the ITR sequences that cannot function in transposition do not confer transposition immunity.  相似文献   

6.
Insertion element IS1 and IS1-based transposon Tn9 generate cointegrates (containing vector and target DNAs joined by duplicate copies of IS1 or Tn9) and simple insertions (containing IS1 or Tn9 detached from vector sequences). Based on studies of transposon Tn5 we had proposed a conservative (non-replicative) model for simple insertion. Others had proposed that all transposition is replicative, occurring in a rolling circle structure, and that the way DNA strands are joined when replication terminates determines whether a simple insertion or a cointegrate is formed.--We selected for the transposition of amp and cam resistance markers from pBR322::Tn9 plasmids to an F factor in recA-E. coli and identified products containing three and four copies of IS1, corresponding to true cointegrates (from monomeric plasmids), and simple insertions (from dimeric plasmids). The simple insertions with four copies of IS1 outnumbered those with three by a ratio of about 3:1, whereas true cointegrates containing three copies of IS1 were more numerous than those with four.--A straightforward rolling circle model had predicted that the simple insertions containing three copies of IS1 should be more frequent than those with four. Because we obtained the opposite result we propose that simple insertions only arise when the element fails to replicate or if replication starts but then terminates prematurely. The two classes of products, simple insertions and cointegrates, reflect alternative conservative and replicative fates, respectively, of an early intermediate in transposition.  相似文献   

7.
The Fis (factor for inversion stimulation) protein of Escherichia coli was found to influence the frequency of transposon Tn5 and insertion sequence IS50 transposition. Fis stimulated both Tn5 and IS50 transposition events and also inhibited IS50 transposition in Dam-bacteria. This influence was not due to regulation by Fis of the expression of the Tn5 transposition proteins. We localized, by DNase I footprinting, one Fis site overlapping the inside end of IS50 and give evidence to strongly suggest that when Fis binds to this site, IS50 transposition is inhibited. The Fis site at the inside end overlaps three Dam GATC sites, and Fis bound efficiently only to the unmethylated substrate. Using a mobility shift assay, we also identified another potential Fis site within IS50. Given the growth phase-dependent expression of Fis and its differential effect on Tn5 versus IS50 transposition in Dam-bacteria, we propose that the high levels of Fis present during exponential growth stimulate transposition events and might bias those events toward Tn5 and away from IS50 transposition.  相似文献   

8.
Tn916 [carries tet(M)] is a 16.4-kb conjugative transposon that can establish itself in multiple copies in Enterococcus faecalis. To study the interaction of coresident homologous transposons during conjugation, an E. faecalis mutant defective in homologous recombination was utilized for construction of strains harboring Tn916 delta E (a derivative in which erm is substituted for tet) on the chromosome and Tn916 on a nonconjugative plasmid. When these strains were used as donors, the two transposons were able to transfer independently; however, they were found to transfer and become coestablished in the recipient up to 50% of the time. In contrast, cotransfer of a plasmid marker located outside the transposon occurred at a frequency of no greater than 0.5%. Separate experiments showed that mobilization of the nonconjugative plasmids pAM401 and pVA749 by chromosome-borne copies of Tn916 occurred only at low frequencies (generally less than 2% cotransfer). The data imply that the initiation of transposition of Tn916 results in a trans activation that is specific for homologous transposons present in the same cell.  相似文献   

9.
Repetitive sequences were isolated and characterized as double-stranded DNA fragments by treatment with S1 nuclease after denaturation and renaturation of the total DNA of Enterobacter cloacae MD36. One repetitive sequence was identical to the nucleotide sequence of IS10-right (IS10R), which is the active element in the plasmid-associated transposon Tn10. Unexpectedly, 15 copies of IS10R were found in the chromosomal DNA of E. cloacae MD36. One copy of the central region of Tn10 was found in the total DNA of E. cloacae MD36. IS10Rs in restriction fragments isolated from the E. cloacae MD36 total DNA showed 9-bp duplications adjacent to the terminal sequences that are characteristic of Tn10 transposition. This result suggests that many copies of IS10R in E. cloacae MD36 are due to transposition of IS10R alone, not due to transposition of Tn10 or to DNA rearrangement. I also found nine copies of IS10 in Shigella sonnei HH109, two and four copies in two different natural isolates of Escherichia coli, and two copies in E. coli K-12 strain JM109 from the 60 bacterial strains that were examined. All dam sites in the IS10s in E. cloacae MD36 and S. sonnei HH109 were methylated. Tn10 and IS10 transpose by a mechanism in which the element is excised from the donor site and inserted into the new target site without significant replication of the transposing segment; thus, the copy numbers of the elements in the cell are thought to be unchanged in most circumstances. Accumulation of IS10 copies in E. cloacae MD36 has interesting evolutionary implications.  相似文献   

10.
A new mutagenesis assay system based on the phage lambda cro repressor gene residing on a plasmid was developed. The assay detects mutations in cro that decrease the binding of the repressor to the OR operator in an OR PR-lacZ fusion present in a lambda prophage. Mutations arose spontaneously during growth of E. coli cells harboring cro plasmids at a frequency of 3-6 x 10(-6). Analysis of some 200 cro mutants from several 'wild-type' strains revealed a substantial fraction of 25-70% insertion events caused by transposition of IS elements. Most of the insertions were caused by IS1, but IS5 insertions were observed too. In strains harboring Tn10, IS10 was responsible for most insertions. Restriction nuclease digestion analysis revealed a preference for insertion of IS10 into the C-terminal half of cro, despite the absence of sequences which are known hot spots for Tn10 insertions. The frequency of IS1 insertions into cro decreased 25-60-fold and that of IS10 insertions decreased 200-fold in cells carrying the recA56 mutation, suggesting that RecA is involved in transposition of these elements. During the logarithmic phase of growth, the mutation frequency was constant for at least 22 generations; however, upon continuous incubation at the stationary phase, the mutation frequency gradually increased, yielding a 3-fold increase in the frequency of insertion and a 4-5-fold increase in point mutation. Genomic Southern analysis of chromosomal IS elements in cells which underwent a transposition from the chromosome into the cro plasmid revealed that the number and distribution of IS1 and IS5 were usually unaltered compared to cells which did not undergo a transposition event. In contrast, essentially each IS10 transposition was accompanied by multiple events which led to changes in the number and distribution of chromosomal IS10 elements.  相似文献   

11.
Effect of dam methylation on Tn5 transposition   总被引:27,自引:0,他引:27  
  相似文献   

12.
Nucleotide sequences required for Tn3 transposition immunity.   总被引:5,自引:3,他引:2       下载免费PDF全文
The Tn3 transposon inserts at a reduced frequency into a plasmid already containing a copy of Tn3, a phenomenon known as transposition immunity. The cis-acting site on Tn3 responsible for immunity was mapped by deletions from each side to be within the terminal 38-base-pair sequence that is inversely repeated at the ends of Tn3. Two palindromic sequences are present in the essential part of this region. Some deletions conferred only partial immunity, and others conferred negative immunity. Multiple copies of partially immune ends conferred additional immunity. No other part of Tn3 was necessary for immunity.  相似文献   

13.
Nonrandom insertion of Tn5 into cloned human adenovirus DNA   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
Characterization of in vitro constructed IS30-flanked transposons   总被引:1,自引:0,他引:1  
R Stalder  W Arber 《Gene》1989,76(2):187-193
In order to facilitate functional studies on the mobile genetic element IS30, a resident of the Escherichia coli chromosome, transposon structures with two copies of IS30 flanking the chloramphenicol-resistance gene cat were constructed in vitro. Transposons containing IS30 as direct repeats (Tn2700 and Tn2702) transpose from multicopy plasmids into the genome of phage P1-15, thus giving rise to special transduction for cat with frequencies between 10(-5) and 10(-8)/plaque-forming unit. In contrast, transposon structures with IS30 in inverted repeat (Tn2701 and Tn2703) showed no detectable (less than 10(-9] transposition activity in vivo. By restriction analysis, two insertion sites of Tn2700 and Tn2702 on the phage P1-15 genome were indistinguishable from those observed earlier with a single copy of the IS30 element. These two insertion sites were used several times independently by Tn2700 and Tn2702. This confirms the non-random target selection by the element and it indicates that transposition of Tn2700 and Tn2702 follows the same rules as that of IS30.  相似文献   

16.
R Bainton  P Gamas  N L Craig 《Cell》1991,65(5):805-816
We have developed a cell-free system in which the bacterial transposon Tn7 inserts at high frequency into its preferred target site in the Escherichia coli chromosome, attTn7; Tn7 transposition in vitro requires ATP and Tn7-encoded proteins. Tn7 transposes via a cut and paste mechanism in which the element is excised from the donor DNA by staggered double-strand breaks and then inserted into attTn7 by the joining of 3' transposon ends to 5' target ends. Neither recombination intermediates nor products are observed in the absence of any protein component or DNA substrate. Thus, we suggest that Tn7 transposition occurs in a nucleoprotein complex containing several proteins and the substrate DNAs and that recognition of attTn7 within this complex provokes strand cleavages at the Tn7 ends.  相似文献   

17.
The frequency of Tn5 transposition localized in an arm of a tandem duplication was estimated as 1.3 X 10(-2) per cell per generation, two orders of magnitude higher than usual one. Approximately thirty per cent of all transpositions usually registered occur from the spontaneous duplications. The effect revealing latent transpositions is in good accordance with a conservative transposition model permitting some interesting predictions: 1. Composite transposons can be a reason for the double stranded cuts in DNA. 2. The transposition frequency in cis for composite elements seems to be many times higher than in trans. 3. Partially transpositions in cis can be recA dependent. 4. The estimation of Tn5 transposition in cis presented in the paper is a minimal one.  相似文献   

18.
C Y Wang  V C Bond    C A Genco 《Journal of bacteriology》1997,179(11):3808-3812
In this study a second endogenous Porphyromonas gingivalis insertion element (IS element) that is capable of transposition within P. gingivalis was identified. Nucleotide sequence analysis of the Tn4351 insertion site in a P. gingivalis Tn4351-generated transconjugant showed that a complete copy of the previously unidentified IS element, designated PGIS2, had inserted into IS4351R in Tn4351. PGIS2 is 1,207 bp in length with 19-bp imperfect terminal inverted repeats, and insertion resulted in a duplicated 10-bp target sequence. Results of Southern hybridization of chromosomal DNA isolated from several P. gingivalis strains with a PGIS2-specific probe demonstrated that the number of copies of PGIS2 per genome varies among different P. gingivalis strains. Computer analysis of the putative polypeptide encoded by PGIS2 revealed strong homologies to the products encoded by IS1358 from Vibrio cholerae, ISAS1 from Aeromonas salmonicida, and H-rpt in Escherichia coli K-12.  相似文献   

19.
Structure and stability of transposon 5-mediated cointegrates   总被引:5,自引:0,他引:5  
We have determined the structure of a set of independently derived, Tn5-mediated cointegrates and examined the stability of several examples. A variety of cointegrate structures was found, including those mediated by the entire compound transposon, and those mediated by a single flanking IS50 element, which was always IS50-R, and never IS50-L. IS50-R but not IS50-L is reported to code for a protein(s) required for transposition. This finding confirms that IS50-L is relatively inactive and suggests that the active transposition protein(s) acts largely in cis on IS50-R. Another class of cointegrate was created by inverse transposition of Tn5 (using the inside ends of the flanking elements). In addition, we found an unexpectedly large set of cointegrates, in which the joint between the two plasmids was not adjacent to the transposon. All cointegrates analysed were found to be stable. This suggests that Tn5, unlike the transposon Tn3, does not transpose via an obligate cointegrate intermediate. This finding is compared to previous results with Tn5 and Tn9, and is discussed in terms of current models of transposition.  相似文献   

20.
A derivative of Tn5 with direct terminal repeats can transpose   总被引:9,自引:0,他引:9  
The 5.7 kb4 transposable kanamycin resistance determinant Tn5 contains 1.5 kb terminal inverted repeats which we here call arms. Tn5's arms contain the genes and sites necessary for Tn5 transposition, and are not homologous to previously described transposable elements. To determine whether one or both arms is a transposable (IS) element, we transposed Tn5 to pBR322 and used restriction endonuclease digestion and ligation in vitro to generate plasmid derivatives designated pTn5-DR1 and pTn5-DR2 in which Tn5's arms were present in direct rather than in inverted orientation. Analysis of transposition products from dimeric forms of the pTn5-DR1 plasmid to phage λ showed that the outside and inside termini of right and of left arms could function in transposition. We conclude that both of Tn5's arms are transposable elements and name them IS50L (left) and IS50R (right). IS50R, which encodes transposase, was used several-fold more frequently than IS50L, which contain an ochre mutant allele of transposase: this implies that Tn5's transposase acts preferentially on the DNA segment which encodes it. Analysis of transpositions of the amprkanr element Tn5-DR2 to the lac operon showed that Tn5-DR2, like Tn5 wild-type, exhibits regional preference without strict site specificity in the choice of insertion sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号