首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent—as widely believed—but could represent alternate outcomes of a common transpositional pathway.  相似文献   

2.
The bacterial transposon Tn5 possesses a regulatory mechanism that allows it to move with higher efficiency when it is first introduced into a cell than after it is established. Tn5 is a composite transposable element containing inverted repeats of two nearly identical elements, IS 50R, which encodes the transposase protein necessary for Tn5 movement, and IS50L which contains an ochre mutant allele of the transposase gene. Data presented here show that Tn5 transposition is inhibited about 50-fold in cells of Escherichia coli which already carry IS 50R in the multicopy plasmid pBR322. If the cells contain a plasmid carrying either IS50L instead of IS50R, or derivatives of IS 50R in which the transposase gene has been mutated, little if any inhibition of Tn5 transposition is found. Although inhibition had previously been hypothesized to require interaction between the products of IS50 L and IS50R, our results show that IS50R alone is sufficient to mediate inhibition and suggest that the inhibitor is a product of the transposase gene itself.  相似文献   

3.
All genes critical for plasmid replication regulation are located on the plasmid rather than on the host chromosome. It is possible therefore that there can be copy-up “cheater” mutants. In spite of this possibility, low copy number plasmids appear to exist stably in host populations. We examined this paradox using a multilevel selection model. Simulations showed that, a slightly higher copy number mutant could out-compete the wild type. Consequently, another mutant with still higher copy number could invade the first invader. However, the realized benefit of increasing intra-host fitness was saturating whereas that of inter-host fitness was exponential. As a result, above a threshold, intra-host selection was overcompensated by inter-host selection and the low copy number wild type plasmid could back invade a very high copy number plasmid. This led to a rock-paper-scissor (RPS) like situation that allowed the coexistence of plasmids with varied copy numbers. Furthermore, another type of cheater that had lost the genes required for conjugation but could hitchhike on a conjugal plasmid, could further reduce the advantage of copy-up mutants. These sociobiological interactions may compliment molecular mechanisms of replication regulation in stabilizing the copy numbers.  相似文献   

4.
The kinetics of accumulation of resident transposon copies in a dividing population has been defined using a special experimental system. Analysis of the kinetics made it possible to estimate the probability of transposition for Tn5 as 2.5 X 10(-4) and for Tn10 as 2.3 X 10(-6) per cell per generation. Transposition of the composite elements does not depend on RecBC or RecF pathways of recombination. The fraction of the bacterial population with tandem duplications in the proA region of the genome is permanent for Escherichia coli. It is independent of the recombination pathways (RecBC of RecF) and the integrity of DNA polymerase I.  相似文献   

5.
6.
Tn5 transposase (Tnp) overproduction is lethal to Escherichia coli. The overproduction causes cell filamentation and abnormal chromosome segregation. Here we present three lines of evidence strongly suggesting that Tnp overproduction killing is due to titration of topoisomerase I. First, a suppressor mutation of transposase overproduction killing, stkD10, is localized in topA (the gene for topoisomerase I). The stkD10 mutant has the following characteristics: first, it has an increased abundance of topoisomerase I protein, the topoisomerase I is defective for the DNA relaxation activity, and DNA gyrase activity is reduced; second, the suppressor phenotype of a second mutation localized in rpoH, stkA14 (H. Yigit and W. S. Reznikoff, J. Bacteriol. 179:1704–1713, 1997), can be explained by an increase in topA expression; and third, overexpression of wild-type topA partially suppresses the killing. Finally, topoisomerase I was found to enhance Tn5 transposition up to 30-fold in vivo.  相似文献   

7.
线粒体是细胞能量和自由基代谢中心,并在细胞凋亡、钙调控、细胞周期和信号转导中发挥重要作用,维持线粒体功能正常对于细胞正常行使职能意义重大。线粒体的功能与线粒体DNA(mitochondrial DNA,mtDNA)的数量和质量紧密相关,mtDNA的数量即mtDNA拷贝数又受到mtDNA质量的影响,因此mtDNA拷贝数可作为线粒体功能的重要表征。mtDNA拷贝数变异引起线粒体功能紊乱,进而导致疾病发生。本文综述了mtDNA拷贝数变异与神经退行性疾病、心血管疾病、肿瘤等疾病的发生发展和个体衰老之间的关系,以及mtDNA复制转录相关因子、氧化应激、细胞自噬等因素介导mtDNA拷贝数变异的调控机制。以期为进一步深入探究mtDNA拷贝数调控的分子机制,以及未来治疗神经退行性疾病、肿瘤及延缓衰老等提供一定的理论基础。  相似文献   

8.
Summary Tn5-trp hybrid transposons have been constructed by insertion of a trpPOED Hind III fragment into an in vivo Tn5 internal deletion mutant or by substitution of trp for the internal Tn5 Hind III fragment. These hybrids are called, respectively, Tn409 and Tn410. Both Tn409 and Tn410 will transpose into in the presence of a complementing Tn5 element. In the absence of a wild Tn5, lysogens carrying R1162::Tn409 and R1162::Tn410 plasmids will yield trp phages at less than six per cent of the complemented frequency. This reduction indicates that Tn409 and Tn410 lack a diffusible transposition function provided by wild Tn5 elements. However, the formation of trp phages without complementation is real. Most of these transducing particles contain Tn409 and Tn410 still linked to the carrier R1162 plasmid. This observation suggests that uncomplemented Tn409 and Tn410 elements mediate the formation of -transposon-plasmid cointegrate structures. Thus, the missing transposition function may be involved in resolving these cointegrate structures to the final ::Tn409 or ::Tn410 product.Abbreviations p.f.u. plaque-forming units - MIC minimal inhibitory concentration - LFT low frequency transducing - HFT high frequency transducing  相似文献   

9.
C. T. Kuan  S. K. Liu    I. Tessman 《Genetics》1991,128(1):45-57
Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of the RecA protein was not required. Transposition was accompanied by partial, and occasionally full, restoration of the functional integrity of the gene vacated by the excised Tn5. The stimulation of transposition was inhibited by an uncleavable LexA protein and was strongly enhanced by an additional role of the RecA(Prtc) protein besides its mediation of LexA cleavage. To account for the enhanced transposition, we suggest that (i) there may be a LexA binding site within the promoter for the IS50 transposase, (ii) activated RecA may cleave the IS50 transposition inhibitor, and (iii) the transposase may be formed by RecA cleavage of a precursor molecule.  相似文献   

10.
The Mu transposon of maize exists in a highly mutagenic strain called Robertson's Mutator. Plants of this strain contain 10-50 copies of the Mu element, whereas most maize strains and other plants have none. When Mutator plants are crossed to plants of the inbred line 1S2P, which does not have copies of Mu, the progeny plants have approximately the same number of Mu sequences as did their Mutator parent. Approximately one-half of these copies have segregated from their parent and one-half have arisen by transposition and are integrated into new positions in the genome. This maintenance of copy number can be accounted for by an extremely high rate of transposition of the Mu elements (10-15 transpositions per gamete per generation). When Mutator plants are self-pollinated, the progeny double their Mu copy number in the first generation, but maintain a constant number of Mu sequences with subsequent self-pollinations. Transposition of Mu and the events that lead to copy number maintenance occur very late in the development of the germ cells but before fertilization. A larger version of the Mu element transposes but is not necessary for transposition of the Mu sequences. The progeny of crosses with a Mutator plant occasionally lack Mutator activity; these strains retain copies of the Mu element, but these elements no longer transpose.  相似文献   

11.
Transposition of the kanamycin-resistance transposon Tn903   总被引:6,自引:0,他引:6  
Summary The insertion of the kanamycin-resistance transposon, Tn903, into the Escherichia coli chromosome was studied. Tn903 is similar in structure to the well known transposons Tn5 and Tn10 in that it has a unique central sequence flanked by inverted repeat sequences extending more than a thousand base pairs. However, the central region of Tn903 has enough single-frame coding capacity only for the drug modifying enzyme, whereas Tn5 and Tn10 carry multigenic unique sequences. In this paper we demonstrate that two different classes of insertion event occur: (1) the first class is a complex event in which all or part of the genome of the bacteriophage lambda vector is co-inserted near the purE locus on the E. coli chromosome (11.7 min); (2) the second class appears to be a simple transposition event in which the transposon alone is inserted at relatively nonspecific sites in the chromosome, as has been described for Tn5 and Tn10. Furthermore both classes show dependency on homology-requiring recombination systems. We suggest that Tn903 transposes infrequently because it must utilize a recA-controlled host function, whereas Tn5 and Tn10 are recA-independent and encode similar but more active functions on the transposon DNA.  相似文献   

12.
Genetic analysis of Porphyromonas gingivalis, an obligately anaerobic gram-negative bacterium, has been hindered by the apparent lack of naturally occurring bacteriophages, transposable elements, and plasmids. Plasmid R751::*omega 4 has previously been used as a suicide vector to demonstrate transposition of Tn4351 in B. uniformis. The erythromycin resistance gene on Tn4351 functions in Bacteroides and Porphyromonas. Erythromycin-resistant transconjugants were obtained at a mean frequency of 1.6 x 10(-7) from matings between Escherichia coli HB101 containing R751::*omega 4 and P. gingivalis 33277. Southern blot hybridization analysis indicated that about half of the erythromycin-resistant P. gingivalis transconjugants contained simple insertions of Tn4351 and half contained both Tn4351 and R751 sequences. The presence of R751 sequences in some P. gingivalis transconjugants most likely occurred from Tn4351-mediated cointegration of R751, since we were unable to detect autonomous plasmid in these P. gingivalis transconjugants. The P. gingivalis-Tn4351 DNA junction fragments from different transconjugants varied in size. These results are consistent with transposition of Tn4351 and with insertion at several different locations in the P. gingivalis chromosome. Tn4351 may be useful as a mutagen to isolate well-defined mutants of P. gingivalis.  相似文献   

13.
Transposition Tn917 was introduced into Bacillus pumilus 289 by protoplast transformation with plasmid pTV32. The temperature-sensitive replication property of pTV32 was maintained in B. pumilus. Tn917 was transposed efficiently in B. pumilus with 4.8 x 10(-4) transposition rate. The yield of auxotrophs was about 0.65% in all insertional mutants. It indicated a prospects for the use of Tn917 as a tool for insertional mutagenesis and genetic manipulation in B. pumilus.  相似文献   

14.
Transposition of Tn917 in Bacillus megaterium.   总被引:5,自引:1,他引:4  
Transposon Tn917, carried on plasmid pTV1, was introduced into Bacillus megaterium and transposed efficiently and apparently randomly. Insertional mutations included at least eight different auxotrophic loci, two carbon source loci, and sporulation loci. One trp::Tn917 mutation was further verified as an insertion by both reversion and transduction.  相似文献   

15.
ABSTRACT

Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by “DNA-based” transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.  相似文献   

16.
Transposition of Tn1000: in vivo properties.   总被引:8,自引:6,他引:2       下载免费PDF全文
Transposition mediated by the Tn1000 transposase was investigated by using transposon variants carrying synthetic or wild-type termini but no intact Tn1000 genes. Transposon Tn1001, whose only homologies to Tn1000 are in its 38-base-pair terminal inverted repeats, transposed at the same rate as Tn1005, an artificial construct carrying wild-type Tn1000 termini and approximately 1 kilobase of flanking Tn1000 DNA at each end, when transposase was supplied in trans. The majority of the transpositions into pOX38 gave rise to cointegrates, but approximately 10% of the products expressed phenotypes of direct transpositions. The expression and temperature dependence of the tnpA gene product were examined by studying transposition of Tn1001 to bacteriophage lambda. The temperature optimum for transposition was 37 degrees C, and the transposase was stable for up to 2 h at this temperature.  相似文献   

17.
18.
19.
Transposition of Tn4560 of Streptomyces fradiae in Mycobacterium smegmatis   总被引:1,自引:0,他引:1  
Tn4560 (8.6 kb) was derived from Tn4556, a Tn3-like element from Streptomyces fradiae. It contains a viomycin resistance gene that has not been used previously for selection in mycobacteria. Tn4560, cloned in a Streptomyces plasmid, was introduced by electroporation into Mycobacterium smegmatis mc(2)155. Tn4560 transposed into the host genome: there was no obvious target sequence preference, and insertions were in or near several conserved open reading frames. The insertions were located far apart on different AseI macrorestriction fragments. Unexpectedly, the transposon delivery plasmid, pUC1169, derived from the Streptomyces multicopy plasmid pIJ101, replicated partially in M. smegmatis, but was lost spontaneously during subculture. Replication of pUC1169 probably contributed to the relatively high efficiency of Tn4560 delivery: up to 28% of the potential M. smegmatis transformants acquired a stable transposon insertion. The data indicated that Tn4560 may be useful for random mutagenesis of M. smegmatis.  相似文献   

20.
Conjugal crosses with Pseudomonas aeruginosa donors carrying the CAM-OCT and RP4::Tn7 plasmids result in transfer of the Tn7 trimethoprim resistance (Tp(r)) determinant independently of RP4 markers. All Tp(r) exconjugants which lack RP4 markers have CAM-OCT genes and therefore must have received CAM-OCT::Tn7 plasmids formed by transposition of Tn7 from RP4::Tn7 to CAM-OCT. Most crosses yield exconjugants carrying mutant CAM-OCT plasmids which no longer determine either camphor or alkane utilization and thus appear to carry Tn7 inserts in the cam or alk loci, respectively. Transduction and reversion experiments indicated that at least 13 alkane-negative, camphor-positive, Tp(r) CAM-OCT::Tn7 plasmids carry an alk::Tn7 mutation. Determination of linkage between the alk mutation and the Tp(r) determinant of Tn7 on these plasmids is complicated by the presence of multiple copies of the Tn7 element in the genome. Generalized transduction will remove Tn7 from a CAM-OCT alk::Tn7 plasmid to yield alk(+) cells which carry no Tp(r) determinant on the CAM-OCT plasmid (as shown by transfer of the plasmid to a second strain). But the transduction to alk(+) does not remove all Tp(r) determinants from the genome of the recipient cell because the alkane-positive transductants remain trimethoprim resistant. Thus, it appears that copies of Tn7 can accumulate in the genome of P. aeruginosa (CAM-OCT alk::Tn7) strains without leaving their original site. This result is consistent with transposition models that involve replication of the transposable element without excision from the original site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号