首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1996,133(5):997-1005
Many membrane traffic events that were previously thought to be constitutive recently have been found to be regulated by a variety of intracellular signaling pathways. The polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA (dIgA) from the basolateral to the apical surface of polarized epithelial cells. Transcytosis is stimulated by binding of dIgA to the pIgR, indicating that the pIgR can transduce a signal to the cytoplasmic machinery responsible for membrane traffic. We report that dIgA binding to the pIgR causes activation of protein kinase C (PKC) and release of inositol 1,4,5- trisphosphate (IP3). The IP3 causes an elevation of intracellular Ca. Artificially activating PKC with phorbol myristate acetate or poisoning the calcium pump with thapsigargin stimulates transcytosis of pIgR, while the intracellular Ca chelator BAPTA-AM inhibits transcytosis. Our data suggest that ligand-induced signaling by the pIgR may regulate membrane traffic via well-known second messenger pathways involving PKC, IP3, and Ca. This may be a model of a general means by which membrane traffic is regulated by receptor-ligand interaction and signaling pathways.  相似文献   

2.
The copines are a family of C2- and von Willebrand factor A-domain-containing proteins that have been proposed to respond to increases in intracellular calcium by translocating to the plasma membrane. The copines have been reported to interact with a range of cell signalling and cytoskeletal proteins, which may therefore be targeted to the membrane following increases in cellular calcium. However, neither the function of the copines, nor their actual movement to the plasma membrane, has been fully established in mammalian cells. Here, we show that copines-1, -2, -3, -6 and -7 respond differently to a methacholine-evoked intracellular increase in calcium in human embryonic kidney cell line-293 cells, and that their membrane association requires different levels of intracellular calcium. We demonstrate that two of these copines associate with different intracellular vesicles following calcium entry into cells, and identify a novel conserved amino acid sequence that is required for their membrane translocation in living cells. Our data show that the von Willebrand factor A-domain of the copines modulates their calcium sensitivity and intracellular targeting. Together, these findings suggest a different set of roles for the members of this protein family in mediating calcium-dependent processes in mammalian cells.  相似文献   

3.
Assembly of type C retroviruses such as Moloney murine leukemia virus (M-MuLV) ordinarily occurs at the plasma membranes of infected cells and absolutely requires the particle core precursor protein, Pr65gag. Previously we have shown that Pr65gag is membrane associated and that at least a portion of intracellular Pr65gag protein appears to be routed to the plasma membrane by a vesicular transport pathway. Here we show that intracellular particle formation can occur in M-MuLV-infected cells. M-MuLV immature particles were observed by electron microscopy budding into and within rough endoplasmic reticulum, Golgi, and vacuolar compartments. Biochemical fractionation studies indicated that intracellular Pr65gag was present in nonionic detergent-resistant complexes of greater than 150S. Additionally, viral RNA and polymerase functions appeared to be associated with intracellular particles, as were Gag-beta-galactosidase fusion proteins which have the capacity to be incorporated into virions. Immature intracellular particles in postnuclear lysates could be proteolytically processed in vitro to mature forms, while extracellular immature M-MuLV particles remained immature as long as 10 h during incubations. The occurrence of M-MuLV-derived intracellular particles demonstrates that Pr65gag can associate with intracellular membranes and indicates that if a plasma membrane Pr65gag receptor exists, it also can be found in other membrane compartments. These results support the hypothesis that intracellular particles may serve as a virus reservoir during in vivo infections.  相似文献   

4.
Poliovirus protein 2C is a 329-amino acid-protein that is essential for viral RNA synthesis and may perform multiple functions. In infected cells, it is associated with virus-specific membrane vesicles. Recombinant 2C protein expressed in transfected cells has been shown to associate with and induce rearrangement of the intracellular membrane network. This study was designed to map the determinants of membrane binding and rearrangement in the 2C protein. Computer-assisted analysis of the protein sequence led to a prediction that the protein folds into a structure composed of three domains. Expression plasmids that encode each or combinations of these predicted domains were used to examine the abilities of the partial protein sequences to associate with intracellular membranes and to induce rearrangement of these membranes in HeLa cells. Biochemical fractionation procedures suggested that the N-terminal region of the protein was required for membrane association. Electron microscopic and immunoelectron microscopic observation showed that both the N- and C-terminal regions, but not the central portion, of 2C protein interact with intracellular membranes and induce major changes in their morphology. The central portion, when fused to the N-terminal region, altered the specific membrane architecture induced by the N-terminal region, giving rise to vesicles resembling those observed during poliovirus infection.  相似文献   

5.
Heat shock (45 degrees C) caused a rapid (less than 1 min) release of inositol trisphosphate from the membranes of HA-1 CHO fibroblasts. The rise in inositol trisphosphate concentration was followed by an increase in intracellular free Ca++. In addition to the heat induced rise in intracellular free Ca++, we observed an increase in 45Ca++ influx following nonlethal heat shock (45 degrees C/10 min). The heat-induced increase in 45Ca++ influx was linearly related to membrane accumulation of phosphatidic acid, phosphoinositide metabolite that may be involved in Ca++ gating. These results suggest that the membrane may be the proximal target of heat shock; stimulation of rapid breakdown of polyphosphoinositides and subsequent increases in intracellular free Ca++ may provide a mechanistic insight into the pleiotropic effects of heat. In addition, the large increases in Ca++ influx could initiate a Ca++ dependent mechanism of thermal cell killing.  相似文献   

6.
The C2 domain is a Ca(2+)-binding motif of approximately 130 residues in length originally identified in the Ca(2+)-dependent isoforms of protein kinase C. Single and multiple copies of C2 domains have been identified in a growing number of eukaryotic signalling proteins that interact with cellular membranes and mediate a broad array of critical intracellular processes, including membrane trafficking, the generation of lipid-second messengers, activation of GTPases, and the control of protein phosphorylation. As a group, C2 domains display the remarkable property of binding a variety of different ligands and substrates, including Ca2+, phospholipids, inositol polyphosphates, and intracellular proteins. Expanding this functional diversity is the fact that not all proteins containing C2 domains are regulated by Ca2+, suggesting that some C2 domains may play a purely structural role or may have lost the ability to bind Ca2+. The present review summarizes the information currently available regarding the structure and function of the C2 domain and provides a novel sequence alignment of 65 C2 domain primary structures. This alignment predicts that C2 domains form two distinct topological folds, illustrated by the recent crystal structures of C2 domains from synaptotagmin 1 and phosphoinositide-specific phospholipase C-delta 1, respectively. The alignment highlights residues that may be critical to the C2 domain fold or required for Ca2+ binding and regulation.  相似文献   

7.
R C Rose  J L Choi  A M Bode 《Life sciences》1992,50(20):1543-1549
Studies on the toxic effects of dehydro-L-ascorbic acid (DHAA) have been extended to include evaluations over time periods up to 3 hr. and to test for specific effects on a membrane transport protein, a membrane-bound enzyme and a soluble intracellular enzyme. In studies on cultured corneal endothelial cells, DHAA concentrations of 1, 2, and 5 mM over 3 hr. had an inhibitory effect on subsequent uptake of DHAA present at a tracer level. Surviving fragments of human placenta and alkaline phosphatase activity of the placental brush-border membrane were susceptible to the effect of DHAA at a high concentration (10 mM). Because intracellular metabolism of DHAA was not affected, and an increase in membrane permeability was not detected, it is concluded that a specific membrane transport protein might be the site of DHAA-induced damage. These studies support the concept that the oxidized form of ascorbic acid (vitamin C) has potential toxic effects on biological systems and suggests that proteins that mediate transport and metabolism may be sites where DHAA causes damage.  相似文献   

8.
The events leading to decline of intracellular free magnesium concentration following traumatic brain injury are unknown. One possible mechanism that may lead to such declines is an alteration in the number and nature of magnesium binding sites within cell membranes following a traumatic event. Although both alterations in membrane structure and decrease in free magnesium concentration have been independently demonstrated to occur following brain trauma, no correlations between the two events have been shown. In the present study, rat brain phospholipids were extracted and reconstituted in MgATP containing aqueous solutions. Using 31P magnetic resonance spectroscopy to measure free magnesium concentration, enzymatic hydrolysis of the artificial membrane vesicles by phospholipase C was shown to reduce the free magnesium concentration. Since activation of phospholipase C has been demonstrated to occur following traumatic brain injury, we propose that this event may initiate decline in free magnesium levels in vivo.  相似文献   

9.
The site of exercise-induced muscle fatigue is suggested to be the muscle membrane, which includes the sarcolemma and T-tubule membrane; the excitability of the membrane is dependent on the membrane potential. Significant potassium flux from the intracellular space of contracting muscle may decrease the membrane potential to half its resting value. This is true for isolated muscle preparations as well as for the whole body exercise in humans. Specific K+ channels have been identified, that may account for the intracellular K+ loss. Calcium-sensitive K+ channels open when intracellular Ca2+ concentrations increase, as during excitation. ATP-sensitive K+ channels may be involved but may open only at ATP concentrations well below those attained at exhaustion. However, ATP may be compartmentalized and only the membrane-bound ATP concentration may be of significance. Ca2+ accumulation and ATP depletion cause cell destruction; these changes induce an increased K+ conductance, which may inactivate the membrane and consequently prevent tension development. It is hypothesized that such a safety mechanism is identical to the fatigue mechanism.  相似文献   

10.
Calcium-binding proteins and secretion   总被引:3,自引:0,他引:3  
J.C Hutton 《Cell calcium》1986,7(5-6):339-352
The Ca ion plays a central role in the control of the regulated pathway of exocytotic secretion in eukaryote cells. Most secretagogues either directly or indirectly raise cytosolic free Ca levels which in turn affects granule biogenesis, contractile events, gel/sol transition in intracellular matrix and membrane fusion events occurring at exocytosis. Many of these responses are mediated by Ca-binding proteins among which calmodulin and protein kinase C have received prominent attention. Studies of the nature and inter-relationship of proteins which undergo Ca-dependent association with intracellular membranes in secretory tissue reveal that there may be further Ca-binding proteins in these cells which act as intracellular transducers of the Ca signal during secretion.  相似文献   

11.
Chlamydia pneumoniae, an intracellular prokaryote, is known to have requirement for some lipids which it is incapable of synthesizing, and these lipids have important fluidizing roles in plasma membrane. We decided to examine if the trafficking of these lipids to C. pneumoniae alters the physicochemical properties of macrophage plasma membrane, affects the expression of genes and proteins of enzymes associated with metabolism of some of these lipids and assess if Ca2+ signaling usually induced in macrophages infected with C. pneumoniae modulates the genes of these selected enzymes. Chlamydia pneumoniae induced the depletion of macrophage membrane cholesterol, phosphatidylinositol and cardiolipin but caused an increase in phosphotidylcholine resulting in a relative increase in total phospholipids. There was increased membrane fluidity, enhanced macrophage fragility and heightened adherence of macrophages to endothelial cells despite the application of inhibitor of adhesion molecules. Also, there was impairment of macrophage 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase gene and protein expression independent of Ca2+ signaling, while phospholipase C gene and protein were up-regulated in a manner minimally dependent on Ca2+ signaling. The implications of these findings are that macrophages infected with C. pneumoniae have altered membrane physicochemical characteristics which may render them atherogenic.  相似文献   

12.
A variety of intracellular membrane trafficking pathways are involved in establishing the polarization of resorbing osteoclasts and regulating bone resorption activities. Small GTP-binding proteins of rab family have been implicated as key regulators of membrane trafficking in mammalian cells. Here we used a RT-PCR-based cloning method and confocal laser scanning microscopy to explore the expression array and subcellular localization of rab proteins in osteoclasts. Rab1B, rab4B, rab5C, rab7, rab9, rab11B, and rab35 were identified from rat osteoclasts in this study. Rab5C may be associated with early endosomes, while rab11B is localized at perinuclear recycling compartments and may function in the ruffled border membrane turnover and osteoclast motility. Interestingly, late endosomal rabs, rab7, and rab9, were found to localize at the ruffled border membrane indicating a late endosomal nature of this specialized plasma membrane domain in resorbing osteoclasts. This also suggests that late endocytotic pathways may play an important role in the secretion of lysosomal enzymes, such as cathepsin K, during bone resorption.  相似文献   

13.
R H Kramer 《Neuron》1990,4(3):335-341
This paper introduces "patch cramming," a new procedure that utilizes an ion channel gated directly by an intracellular messenger molecule as a probe for detecting changes in the concentration of that molecule in an intact cell. A patch pipette containing the channel in a membrane patch is inserted into a recipient cell where the channel locally "senses" the intracellular messenger. In this study patches containing Ca2(+)-dependent K+ channels were inserted into Helix neurons, where they were activated by Ca2+ influx during trains of action potentials. Channels gated directly by other messengers, including cyclic nucleotides and IP3, have also been identified. Hence, by using detector channels with appropriate specificity, it may be possible to detect local intracellular fluctuations of these molecules.  相似文献   

14.
Protein kinase D (PKD)/protein kinase Cmu is a serine/threonine protein kinase that has been localized in the cytosol and in several intracellular compartments including Golgi, mitochondria and plasma membrane. Using real time imaging of fluorescent protein (GFP)-tagged PKD, we have found that the accumulation of PKD in the Golgi compartment, following a temperature shift from 37 to 20 degrees C, was mediated by the cysteine-rich domain (CRD) of PKD. The CRD of PKD also mediates its interaction with the plasma membrane, further supporting the conclusion that the CRD of PKD may act as a subcellular localization signal.  相似文献   

15.
A group of initial processes in platelet activation, consisting of a platelet shape change, an intracellular calcium mobilization, a calcium efflux, and a membrane fluidity (mobility) change, has been examined in rabbit platelets by a multidimensional stopped-flow method with light scattering, light transmission, and fluorescence measurements. It was found that a 90 degrees light scattering change and internal calcium release (monitored in terms of chlortetracycline fluorescence) take place after a short lag (5 s at 25 degrees C and 2 s at 37 degrees C) following activation by thrombin. The duration of the lag was the same in both cases. During the initial lag period, a rapid increase in platelet membrane fluidity (mobility) was observed by the use of pyrene excimer fluorescence. These results suggest that the intracellular calcium mobilization and the shape change are triggered by the same rate-determining step, and increase in membrane mobility may play some role in the initial stage of platelet activation before intracellular calcium mobilization occurs.  相似文献   

16.
alpha-latrotoxin, a component of black widow spider venom, binds to presynaptic nerve terminals and stimulates massive neurotransmitter release. Previous studies have demonstrated that alpha-latrotoxin first binds to two high-affinity receptors on nerve terminals, neurexins and CLs (CIRLs and latrophilins), and then executes a critical, second step of unknown nature that stimulates neurotransmitter release. We now demonstrate that incubation of alpha-latrotoxin with synaptosomes at 0 degrees C results in its peripheral membrane association. Incubation at 37 degrees C, however, converts the toxin into an operationally integral membrane protein, and induces generation of a protease-resistant fragment that consists of the entire N-terminal domain of alpha-latrotoxin and becomes protease sensitive after lysis of synaptosomes. Our data suggest that alpha-latrotoxin inserts into the presynaptic plasma membrane after receptor binding, resulting in an intracellular location of the N-terminal sequences. Membrane insertion of the N-terminal domain of alpha-latrotoxin occurs spontaneously, independently of membrane recycling or transmembrane ion gradients. We postulate that alpha-latrotoxin acts intracellularly in triggering release, and propose that non-selective cation channels induced by alpha-latrotoxin may be a by-product of membrane insertion.  相似文献   

17.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

18.
We have investigated the molecular mechanisms underlying dynamic organization of the fodrin network by treating the epithelial MDCK cells with various agents affecting intracellular pH, intracellular calcium ion concentration, intracellular calmodulin, and protein kinase C (PKC) activity. Elevation of intracellular calcium level by A23187 or treatment with trifluoperazine (TFP), a calmodulin inhibitor, did not have any drastic effect on the fodrin distribution as judged by immunofluorescence microscopy. A long-term incubation with phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator, in contrast, released fodrin from the lateral walls of the MDCK cells, leading to a diffuse cytoplasmic distribution. TFP, along with PMA, accelerated destabilization of the fodrin skeleton. Treatment with TFP alone rapidly released the cells from the substratum, which, however, could be prevented by PMA. We have previously shown that lowering of intracellular pH (< 6.5) leads to a removal of fodrin from its basolateral residence (Eskelinen et al., 1992) and that this translocation is reversed upon returning normal pH. We now show that the rebuilding of the membrane skeleton can be prevented if TFP is added to the acidified cells. Moreover, in TFP-treated acidified cells, fodrin shows a clusterlike organization similar to that observed in resting lymphocytes. We also noticed that interconversions between these different organizational states of fodrin are independent of the intracellular calcium concentration. Thus manipulation of the intracellular pH and treatment with TFP and PMA reveals different organizational states of the fodrin skeleton. This suggests that fodrin may participate in PMA-, TFP- and pH-sensitive signal transduction pathways.  相似文献   

19.
We studied the ability of the recombinant human-active hemopoietic growth factors granulocyte-macrophage colony-stimulating factor (GM-CSFrh) and granulocyte colony-stimulating factor (G-CSFrh) to activate receptor-mediated transduction pathways which have been implicated in the stimulation of cytotoxic functions in granulocytes. With the use of a panel of fluorescent probes, we found that these two growth factors exerted no detectable immediate effect on the resting transmembrane electrical potential, the intracellular concentration of free calcium ions, or the cytosolic pH of isolated, mature granulocytes. However, when granulocytes were "primed" by preincubation for 90 min with GM-CSFrh or G-CSFrh, the rate of membrane depolarization induced by 10(-7) M N-formyl-methionyl-leucyl-phenylalanine, but not the rate of rise in free calcium ions, was greatly accelerated. In examining potential mechanisms to account for the priming effect of these growth factors, we found that although they did not induce translocation of protein kinase C or stimulate significant degranulation, they each directly caused prompt release of arachidonic acid from plasma membrane phospholipids. Our data indicate that although GM-CSFrh and G-CSFrh do not activate the transduction signals that have most clearly been implicated in receptor-mediated activation of cytotoxic functions in granulocytes--namely, those coupled to membrane depolarization or release of intracellular calcium ions--they appear directly to induce the release of arachidonic acid esterified to membrane phospholipids, an event which may represent the receptor-mediated activation of membrane phospholipases and which may contribute to the "priming" of the cells for enhancement of their functional responsiveness.  相似文献   

20.
The regulatory domains of novel protein kinases C (PKC) contain two C1 domains (C1A and C1B), which have been identified as the interaction site for sn-1,2-diacylglycerol (DAG) and phorbol ester, and a C2 domain that may be involved in interaction with lipids and/or proteins. Although recent reports have indicated that C1A and C1B domains of conventional PKCs play different roles in their DAG-mediated membrane binding and activation, the individual roles of C1A and C1B domains in the DAG-mediated activation of novel PKCs have not been fully understood. In this study, we determined the roles of C1A and C1B domains of PKCdelta by means of in vitro lipid binding analyses and cellular protein translocation measurements. Isothermal titration calorimetry and surface plasmon resonance measurements showed that isolated C1A and C1B domains of PKCdelta have opposite affinities for DAG and phorbol ester; i.e. the C1A domain with high affinity for DAG and the C1B domain with high affinity for phorbol ester. Furthermore, in vitro activity and membrane binding analyses of PKCdelta mutants showed that the C1A domain is critical for the DAG-induced membrane binding and activation of PKCdelta. The studies also indicated that an anionic residue, Glu(177), in the C1A domain plays a key role in controlling the DAG accessibility of the conformationally restricted C1A domain in a phosphatidylserine-dependent manner. Cell studies with enhanced green fluorescent protein-tagged PKCdelta and mutants showed that because of its phosphatidylserine specificity PKCdelta preferentially translocated to the plasma membrane under the conditions in which DAG is randomly distributed among intracellular membranes of HEK293 cells. Collectively, these results provide new insight into the differential roles of C1 domains in the DAG-induced membrane activation of PKCdelta and the origin of its specific subcellular localization in response to DAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号