首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen in its fibrillar state is protected from glycation   总被引:1,自引:0,他引:1  
To assess the impact collagen structures may have on glycation, the effects of glucose upon bovine serum albumin, guinea pig skin collagen, rat tail tendon and monomeric collagen were compared under near physiological conditions. Proteins were incubated with or without 50 mM glucose for 64 d in pH 7.4 50 mM phosphate buffer, followed by reduction, acid/alkaline hydrolysis, and analysis. Yields of non-reducible fructose-lysine, in the form of the acid-degradation products furosine and pyridosine, were significantly higher from skin collagen when compared to albumin. Yields of reducible fructose-lysine, in the form of glucitol- and mannitol-lysine, were conversely much greater for albumin, while tail tendon reported intermediate values. Fructose-lysine and unmodified lysine within collagen fibres prior to incubation was therefore protected by the tight packing of the collagen helices, where milling of tail tendon to increase the surface area exposed much of it to reduction protocols. Together with an analysis of pentosidine formation and other products, these results have shown that the interior of the tightly packed skin collagen fibres is protected from both glycation and reduction, and that glycation products differ depending on the protein incubated. Amino acid analysis then showed that our glycated skin collagen was similar to human diabetic skin collagen. Significant quantities of glucose-independent unknowns form in control incubations; their composition again being protein-dependent. The four compound Ks as previously reported were found to be unique to glycated rat tail tendon and soluble collagen, while another glycation product detected in collagen but not albumin may be attributable to carboxymethyl-arginine.  相似文献   

2.
Stabilization of type I rat tail tendon (RTT) collagen by various aldehydes, viz. formaldehyde, gluteraldehyde, glyoxal and crotanaldehyde was studied to understand the effect of each on the thermal, enzymatic and conformational stability of collagen. The aldehydes have been found to increase the heat stability of rat tail tendon collagen fibres from 62 to 77-86 degrees C. The increase in thermal stability was found to be in a species dependent manner. The variation in the thermal stability of collagen brought about by aldehydes was in the order of formaldehyde > gluteraldehyde > glyoxal > crotanaldehdye. The aldehydes also impart a high degree of stability to collagen against the activity of the degrading enzyme, collagenase. The order of enzymatic stability brought about by aldehydes follows the same trend as the thermal stability brought about by them. This shows that the number of cross-links formed influence both the thermal and enzymatic stability in the similar manner. The effect of various aldehydes on the secondary structure of collagen was studied using circular dichroism and it was found that the aldehydes lead to changes in the amplitude of the circular dichroic (CD) spectrum but did not alter the triple helical conformation of collagen. The secondary structure of collagen is not significantly altered on interaction with different aldehydes.  相似文献   

3.
High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.  相似文献   

4.
The non-enzymatic glucosylation of collagen in vivo and in vitro produces blue-fluorescent cross-links very slowly. The mechanism of their formation is unknown. We investigated the role of oxidation in glycation. When native fluorescent collagen from old-rat tail tendon and its CNBr peptides were oxidized by chemically generated singlet oxygen, cross-linking occurred immediately, and the cross-linked products showed an increased blue fluorescence. Further cross-linking and development of blue fluorescence also were accelerated by singlet oxygen when oxidizing in vitro glucosylated collagen CNBr peptides. It was noted that the blue fluorescence developed at the expense of a near-UV fluorescence. This near-UV fluorophore, which is also present in native collagen, was found to be produced by the in vitro glucosylation of collagen and during the cross-linking by glucosylation was slowly converted to the blue fluorophore. These changes indicate the autoxidation of near-UV fluorescent intermediates to blue fluorescent cross-links during glucosylation. Non-enzymatic fructosylation, which occurs in vivo in certain proteins, was more effective than glucosylation in forming fluorophores and cross-links with collagen in vitro. Fructosylated fluorophores were found different from glucosylated products in their oxidation reactivities with singlet oxygen.  相似文献   

5.
Recent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage. This hypothesis is in stark contrast to reports in literature that indicated that individually mechanical loading or cross-linking each retards enzymatic degradation of collagen substrates. Using our Collagen Enzyme Mechano-Kinetic Automated Testing (CEMKAT) System we mechanically loaded collagen-rich tendon microfibers that had been chemically cross-linked with sugar and tested for degrading enzyme susceptibility. Our results indicated that cross-linked fibers were > 5 times more resistant to enzymatic degradation while unloaded but became highly susceptible to enzyme cleavage when they were stretched by an applied mechanical deformation.  相似文献   

6.
The most serious late complications of ageing and diabetes mellitus follow similar patterns in the dysfunction of retinal capillaries, renal tissue, and the cardiovascular system. The changes are accelerated in diabetic patients owing to hyperglycaemia and are the major cause of premature morbidity and mortality. These tissues and their optimal functioning are dependent on the integrity of their supporting framework of collagen. It is the modification of these properties by glycation that results in many of the damaging late complications. Initially glycation affects the interactions of collagen with cells and other matrix components, but the most damaging effects are caused by the formation of glucose-mediated intermolecular cross-links. These cross-links decrease the critical flexibility and permeability of the tissues and reduce turnover. In contrast to the renal and retinal tissue, the cardiovascular system also contains a significant proportion of the other fibrous connective tissue protein elastin, and its properties are similarly modified by glycation. The nature of these glycation cross-links is now being unravelled and this knowledge is crucial in any attempt to inhibit these deleterious glycation reactions.  相似文献   

7.
The increase in acid-insoluble collagen (AIC) from tail tendons of streptozotocin-diabetic rats was measured and compared with that for control rats. AIC increased from 10% initially to 75% after 12 weeks of diabetes. It then increased slowly to 85% after 45 weeks. AIC for control rats was constant for the first 12 weeks and then increased slowly to 40% after 45 weeks. These data are consistent with an increase in the number of acid-stable cross-links in the collagen due to diabetes. The quantity of collagen solubilized by pepsin at 4 degrees C was unaltered due to diabetes, strong evidence that formation of diabetes-induced cross-links between helical regions of collagen molecules cannot explain the increase in AIC observed. Non-enzymatic glycation (NEG) increased linearly over 45 weeks, but the rate of NEG was much slower than the rate of increase in AIC observed for diabetics. The level of NEG for diabetics was about three times that for controls at a given time, but there was still less than 1 mol of glucose detected/mol of collagen at near maximum acid insolubility. Fluorescence associated with tail tendons was measured to test the hypothesis that fluorescent cross-links form as a consequence of NEG and result in decreased collagen solubility. Fluorescence (lambda ex 370; lambda em 430) increased slowly with age but was similar for control and diabetic tendons of the same age. Fluorescence was not increased in AIC compared with acid-soluble collagen derived from a given tendon sample. NEG of collagen reached near-diabetic levels in non-diabetic rats whose growth was inhibited by restricted feeding, but there was no associated increase in AIC. These data suggest that NEG and the subsequent formation of fluorescent cross-links do not contribute significantly to the rapid increase in AIC in the streptozotocin-rat model of diabetes.  相似文献   

8.
Polymers play an important role in many biological systems, so a fundamental understanding of their cross-links is crucial not only for the development of medicines but also for the development of biomimetic materials. The biomechanical movements of all mammals are aided by tendon fibrils. The self-organization and biomechanical functions of tendon fibrils are determined by the properties of the cross-links between their individual molecules and the interactions among the cross-links. The cross-links of collagen and proteoglycan molecules are particularly important in tendons and, perhaps, bone. To probe cross-links between tendon molecules, we used the cantilever tip of an atomic force microscope in a pulling setup. Applying higher forces to rat tail tendon molecules with the tip led to a local disruption of the highly organized shell of tendon fibrils and to the formation or an increase of a polymer brush of molecules sticking out of the surface. The cross-linking between these molecules was influenced by divalent Ca2+ ions. Furthermore, the molecules of the polymer brush seemed to bind back to the fibrils in several minutes. We propose that sacrificial bonds significantly influence the tendon fibrils' self-organization and self-healing and therefore contribute to toughness and strength.  相似文献   

9.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

10.
Variation of collagen fibril structure in tendon was investigated by x-ray diffraction. Anatomically distinct tendons from single species, as well as tendons from different species, were examined to determine the variations that exist in both the axial and lateral structure of the collagen fibrils. The meridional diffraction is derived from the axial collagen fibril structure. Anatomically distinct tendons of a particular species give meridional patterns that are indistinguishable within experimental error. The meridional diffraction patterns from tendons of different mammals are similar but show small species-specific variations, most noticeably in the 14th–18th orders. Tendons of birds also give meridional patterns that are similar to each other, but the avian patterns differ considerably from the mammalian ones. Avian tendons give stronger odd and weaker even low orders, a feature consistent with a reduced gap:overlap ratio, and have a distinctive intensity pattern for the higher meridional orders. Interpretation of these differences has been approached using biochemical data, diffraction by reconsituted fibers of purified collagen, and Fourier transform analysis. From these methods, it appears that the variations observed in the lower orders (2nd–8th) and in the higher orders (29th–52nd) are probably related to differences in the primary structure of the Type I collagen found in the different species. The variations observed in the 14th–18th orders appear not to be related to features within the triple-helical domain of the molecule. Equatorial diffraction yields information on the lateral packing of collagen molecules in the fibrils, and considerable variation was seen in different tendons. Rat tail tendon gives sharp Bragg reflections, demonstrating the presence of a crystalline lateral arrangement of molecules in the fibril. For the first time, sharp lattice reflections similar to those in rat tail tendon have been observed in nontail tendons, including rat achilles tendon, rabbit leg tendon, and wing and leg tendons of quail. In the rabbit and quail tendons, one of the strong equatorial reflections characteristic of the rat tendon pattern, at 1.26 nm, was absent. The positions of the equatorial maxima, which are a measure of intermolecular spacing, varied considerably, being smallest in the specimens displaying crystalline packing. The intermolecular distance in chiken and turkey leg tendons is longer than that found in mammalian tendons, or in avian wing tendons, which supports the hypothesis that a larger intermolecular spacing is characteristic of tendons that calcify. Thus, x-ray diffraction indicates there are reproducible differences in both the axial and lateral structure of collagen fibrils among different tendons. This work on tendon, a tissue containing almost exclusively Type I collagen as its major component, should serve as a basis for analyzing the structure of other connective tissues, which contain different genetic types of collagen and larger amounts of noncollagenous components.  相似文献   

11.
The X-ray diffraction of fibers reconstituted from purified rat tail tendon collagen has been compared with that of native rat tail tendon. The axial structure is very similar in the two specimens, while the ordered lateral array found in the native state is only poorly reproduced in the reconstituted fiber. Thus, the axial order is determined by the collagen molecules alone, while the native lateral packing may depend, in part at least, on other tissue components.  相似文献   

12.
In studying the effect of ionizing radiation on the properties of human Achilles tendon collagen fibres, the following parameters were analyzed: hydrothermal contraction temperature, module of elasticity, the number of cross-links, free and bound water levels, acids-soluble fraction content, and ultrastructure. With radiation doses of 2-10 Gy no changes in the collagen status were noted. An increased (from 5 to 25 Gy) radiation dose caused changes in physicochemical properties which was indicative of the formation, in the connective tissue collagen, of radiation-induced intermolecular cross-links stabilizing the biopolymer structure.  相似文献   

13.
In aging and diabetes, glycation of collagen molecules leads to the formation of cross-links that could alter the surface charge on collagen fibrils, and hence affect the properties and correct functioning of a number of tissues. The electron-optical stain phosphotungstic acid (PTA) binds to positively charged amino acid side-chains and leads to the characteristic banding pattern of collagen seen in the electron microscope; any change in the charge on these side-chains brought about by glycation will affect the uptake of PTA. We found that, upon glycation, a decrease in stain uptake was observed at up to five regions along the collagen D-period; the greatest decrease in stain uptake was apparent at the c1 band. This reduction in PTA uptake indicates that the binding of fructose leads to an alteration in the surface charge at several sites along the D-period. Not all lysine and arginine residues are involved; there appear to be specific residues that suffer a loss of positive charge.  相似文献   

14.
Non-enzymatic glycosylation of rat tail tendon collagen was examined by incubation with D-glucosein vitro. The changes in molecular parameters such as viscosity, thermal stability, electrophoretic mobility and solubility were determined on nonenzymatically glycosylated collagenin vitro. Tendons incubated with 8 and 24 mg glucose/ml showed an increase in dissolution temperature and a l.6-3-fold increase in thermal isometric tension respectively when compared to tendons incubated in the absence of glucose, indicating the formation of new intermolecular bonds. This conclusion was further supported by the decreased solubility of glycosylated collagen in 0.5 N acetic acid and the change in sub-unit composition as measured from the sodium dodecyl sulphate Polyacrylamide gel electrophoresis pattern. Glycosylated collagen gave a characteristic absorption spectra λmax 248 nm) as distinct from that of control (λmax 242 nm). Denaturation temperature of glycosylated collagen, as determined from temperature dependent viscosity measurements, was reduced. These studies indicate that glycosylation affects the molecular interactions as well as the crosslinking of collagen.  相似文献   

15.
Incubation of tail tendon from a young rat in solutions containing D-ribose resulted in attachment of the monosaccharide to collagen and subsequent cross-link formation at a rate much faster than found for glucose. The collagen rapidly became resistant to solubilization and showed increasing fluorescence. Ribose bound to all major CNBr peptides of collagen, with some preference for the alpha 2-CB3,5 peptide and the triple-helical region of alpha 1-CB6, and was incorporated into higher molecular weight material. Extensive pepsin digestion permitted isolation of dimers of alpha chains cross-linked in triple-helical regions as a result of incubation with ribose. The dimers were identified as beta 11, beta 12, and beta 22 components, and the limited degree of heterogeneity of these components indicated that cross-linking occurred at several sites, some of which must be intermolecular. Isolated beta components were strongly fluorescent with a spectrum similar to that of collagen in aged tissues. Fluorescent dimers with similar characteristics were found in pepsin digests of tail tendons from older rats.  相似文献   

16.
In vitro interactions of benzo[a]pyrene (BaP) with acid-soluble type I collagen from rat tail tendon have been investigated. The fluorescence of BaP increases in the presence of collagen. Bound BaP inhibits the formation of collagen fibrils in solution. When BaP-collagen complexes are irradiated in air with UV (365 nm) light, BaP rapidly undergoes photooxidation with the further inhibition of fibril formation. Viscosity and circular dichroism (CD) studies show that neither BaP nor further UV-irradiation alters the size or helical conformation of the protein. During thermal denaturation of collagen, BaP fluorescence changes. Collagen from young rat tail tendon shows a pronounced drop at about 38 degrees C, whereas that from old rat tail tendon exhibits an increase with a plateau in the same temperature range. These anomalous changes are observed when tyrosine residues, present only in the non-helical terminal telopeptides of collagen, are excited at 275 nm, but not by direct BaP excitation at 387 nm. These findings suggest that the specific hydrophobic telopeptide region, which plays an important role in fibril formation, are affected by bound BaP.  相似文献   

17.
The acid solubility of Type I collagen from rat tail tendons decreases due to diabetes. This finding has been taken as evidence that collagen from diabetics may be more cross-linked than normal. We compared CNBr peptide maps prepared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for [3H] NaBH4-reduced tail tendons from streptozotocin-diabetic rats with maps from age-matched control rats. At least through 30 weeks of diabetes, the distribution of mass of both cross-linked and uncross-linked CNBr peptides was identical in diabetic and control tendons. Therefore, the number of cross-linked peptides did not increase due to diabetes. We analyzed the 3H-cross-linking compounds present on the CNBr peptides and found that the 3H content of peptides cross-linked in control tendons through the bivalent, reduced cross-links hydroxylysinonorleucine and lysinonorleucine was diminished on corresponding peptides from diabetic tendons as a function of duration of diabetes. The cross-linked peptides, however, persisted. Therefore, we conclude that a larger fraction of these bivalent cross-links is found in an unknown, non-reducible form in tendons from diabetic compared with control rats. This resembles a phenomenon normally associated with maturation and/or aging where the non-reducible form of the cross-links is acid-stable. An increase in the fraction of the cross-links that is non-reducible and acid-stable would explain, at least in part, the decrease in acid solubility of the collagen. Non-enzymatic glycation (NEG) was not very specific, since most CNBr peptides bound some glucose. However, peptides from the alpha 2-chain seemed to be preferential targets for NEG. While NEG clearly increased due to diabetes, we found no evidence that increased NEG led to an increased number of cross-links in tail tendon collagen from streptozotocin diabetic rats.  相似文献   

18.
Advanced glycation end-products (AGEs) are one of the major factors of hyperglycemia related complications for diabetic patients. We studied the formation of AGEs in type I collagen after Fe2+-catalyzed non-enzymatic glycosylation in vitro. Type I collagen isolated from rat tail tendon was incubated with glucose and increasing concentrations of iron ions Fe2+. After 4 weeks incubation, cytotoxity of AGEs was indicated by the cytotoxity assay of primary human umbilical vein endothelial cells and primary human monocytes cultured with glycosylated collagen AGEs. Fourier transform infrared spectroscopy analysis revealed that structural changes of functional groups in glycosylated collagen are accelerated by the catalyst Fe2+. Using two-dimensional Fourier-transform infrared correlation spectroscopy analyses, for the first time, we demonstrated that the order of structural changes of these functional groups is -CH- > Amide I > Amide II > Amide III > ν(CO) the carboxylic group of Asn, Gln or polyproline amino acid residue in the course of AGE-collagen formation. Knowing the positions of these functional groups in collagen, this order of changes indicates that during glycation of collagen, the structure of the main chain residues in collagen changed first, and then the side chain changed gradually, which may lead to more carboxylic groups exposed to glucose for further formation of AGE-collagen irreversibly. The findings presented may support the design of new therapeutic strategies to prevent or slow down the Fe2+-catalyzed glycosylation of collagen and other matrix proteins.  相似文献   

19.
Structure and function of bone collagen fibrils   总被引:4,自引:0,他引:4  
The intermolecular volume of fully hydrated collagen fibrils from a number of mineralized and non-mineralized tissues of adult rats has been determined both by an exclusion technique and by a method which involves the monitoring of specific X-ray diffraction parameters. The intermolecular volume of either bone or dentinal fibrils is approximately twice that of either tail or achilles tendon, and the most frequent intermolecular distance in bone or dentine fibrils is approximately 3 Å larger than of the tendons.A number of fibrillar structures are most compatible with the intermolecular volume of rat tail tendon. These include hexagonal molecular packing and orthogonal arrays of microfibrils comprising seven parallel molecular strands. The intermolecular volume of bone or dentinal collagen fibrils, on the other hand, appears to arise from structures having a disordered or pseudo-hexagonal molecular packing, in which the most frequent intermolecular distance is about 19 Å.The space associated with collagen fibrils in adult bone is such that 70 to 80% of the mineral is located within the intermolecular space of the fibrils—approximately equal amounts of mineral being in spaces having lateral dimensions of 25 to 75 Å and 6 to 12 Å, respectively. Particles located in the latter kind of intermolecular space probably constitute, to a large extent, the non-crystalline mineral phase of adult bone.The stereo-chemical constraints on the transport of mineral ions into and within collagen fibrils of bone and tendon support the postulate that bone collagen is an in vivo catalyst for mineral deposition and further suggests that its catalytic activity may be partially regulated through its molecular packing.  相似文献   

20.
The glycosaminoglycan (GAG) side-chains of small leucine-rich proteoglycans have been postulated to mechanically cross-link adjacent collagen fibrils and contribute to tendon mechanics. Enzymatic depletion of tendon GAGs (chondroitin and dermatan sulfate) has emerged as a preferred method to experimentally assess this role. However, GAG removal is typically incomplete and the possibility remains that extant GAGs may remain mechanically functional. The current study specifically investigated the potential mechanical effect of the remaining GAGs after partial enzymatic digestion.A three-dimensional finite element model of tendon was created based upon the concept of proteoglycan mediated inter-fibril load sharing. Approximately 250 interacting, discontinuous collagen fibrils were modeled as having a length of 400 μm, being composed of rod elements of length 67 nm and E-modulus 1 GPa connected in series. Spatial distribution and diameters of these idealized fibrils were derived from a representative cross-sectional electron micrograph of tendon. Rod element lengths corresponded to the collagen fibril D-Period, widely accepted to act as a binding site for decorin and biglycan, the most abundant proteoglycans in tendon. Each element node was connected to nodes of any neighboring fibrils within a radius of 100 nm, the slack length of unstretched chondroitin sulfate. These GAG cross-links were the sole mechanism for lateral load sharing among the discontinuous fibrils, and were modeled as bilinear spring elements. Simulation of tensile testing of tendon with complete cross-linking closely reproduced corresponding experiments on rat tail tendons. Random reduction of 80% of GAG cross-links (matched to a conservative estimate of enzymatic depletion efficacy) predicted a drop of 14% in tendon modulus. Corresponding mechanical properties derived from experiments on rat tail tendons treated in buffer with and without chondroitinase ABC were apparently unaffected, regardless of GAG depletion. Further tests for equivalence, conservatively based on effect size limits predicted by the model, confirmed equivalent stiffness between enzymatically depleted tendons and their native controls.Although the model predicts that relatively small quantities of GAGs acting as primary collagen cross-linking elements could provide mechanical integrity to the tendon, partial enzymatic depletion of GAGs should result in mechanical changes that are not reflected in analogous experimental testing. We thus conclude that GAG side chains of small leucine-rich proteoglycans are not a primary determinant of tensile mechanical behavior in mature rat tail tendons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号