首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.  相似文献   

2.
Dispersed porcine parathyroid cells were incubated at calcium concentrations between 0.5 and 3.0 mM in the presence of 3H- or 14C- amino acids to label newly synthesized parathormone. Up to four times more hormone was secreted at the lower calcium concentration but its specific radioactivity, from 30 to 50 times that of the intracellular pool, did not change. Dibutyrl cyclic AMP doubled immunoactive parathormone secretion at each calcium concentration, but there was no increase in secretion of radioactive hormone if labeled amino acids and secretagogue were added simultaneously. Similarly, when the intracellular pool of parathormone was prelabeled with 3H-amino acids and then the cells were incubated in 14C-amino acids and dibutyryl cyclic AMP, the entire increase in hormone secreted was derived from the prelabeled pool. (1)-isoproterenol increased intracellular cyclic AMP and acted on hormone secretion in a manner indistinguishable from dibutyryl cyclic AMP. In similar double-label experiments dibutyryl cyclic AMP preferentially enhanced secretion of secretory protein-I, a calcium-regulated protein of the parathyroid of unknown function. Calcium, alone, inhibited the intracellular level of cyclic AMP in a concentration-dependent fashion. These data are consistent with the existence in the parathyroid cell preparation of two hormone and secretory protein pools that may be individually recruitable--one consisting of most recently synthesized protein, the other consisting of older "storage" protein. The data do not allow one to decide whether the two pools coexist within individual cells or whether, instead, they exist in separate cells of the dispersed gland preparation.  相似文献   

3.
Tompa P  Prilusky J  Silman I  Sussman JL 《Proteins》2008,71(2):903-909
Targeted turnover of proteins is a key element in the regulation of practically all basic cellular processes. The underlying physicochemical and/or sequential signals, however, are not fully understood. This issue is particularly pertinent in light of the recent recognition that intrinsically unstructured/disordered proteins, common in eukaryotic cells, are extremely susceptible to proteolytic degradation in vitro. The in vivo half-lives of proteins were determined recently in a high-throughput study encompassing the entire yeast proteome; here we examine whether these half-lives correlate with the presence of classical degradation motifs (PEST region, destruction-box, KEN-box, or the N-terminal residue) or with various physicochemical characteristics, such as the size of the protein, the degree of structural disorder, or the presence of low-complexity regions. Our principal finding is that, in general, the half-life of a protein does not depend on the presence of degradation signals within its sequence, even of ubiquitination sites, but correlates mainly with the length of its polypeptide chain and with various measures of structural disorder. Two distinct modes of involvement of disorder in degradation are proposed. Susceptibility to degradation of longer proteins, containing larger numbers of residues in conformational disorder, suggests an extensive function, whereby the effect of disorder can be ascribed to its mere physical presence. However, after normalization for protein length, the only signal that correlates with half-life is disorder, which indicates that it also acts in an intensive manner, that is, as a specific signal, perhaps in conjunction with the recognition of classical degradation motifs. The significance of correlation is rather low; thus protein degradation is not determined by a single characteristic, but is a multi-factorial process that shows large protein-to-protein variations. Protein disorder, nevertheless, plays a key signalling role in many cases.  相似文献   

4.
Using a modified method that involves minimal manipulation of cells, we report new information about nucleotide pool sizes and changes throughout the Escherichia coli growth curve. Nucleotide pool sizes are critically dependent on sample manipulation and extraction methods. Centrifugation and even short (2 min) lapses in sample preparation can dramatically affect results. The measured ATP concentration at three different growth rates is at least 3 mM, well above the 0.8 mM needed to saturate the rRNA promoter P1 in vitro. Many of the pools, including ATP, GTP, and UTP, begin to decrease while the cells are still in mid-log growth. After an almost universal drop in nucleotide concentration as the cells transition from logarithmic to stationary phase, there is a “rebound” of certain nucleotides, most notably ATP, after the cells enter stationary phase, followed by a progressive decrease. UTP, in contrast, increases as the cells transition into stationary phase. The higher UTP values might be related to elevated UDP-glucose/galactose, which was found to be at higher concentrations than expected in stationary phase. dTTP is the most abundant deoxynucleoside triphosphate (dNTP) in the cell despite the fact that its precursors, UDP and UTP, are not. All dNTPs decrease through the growth curve but do not have the abrupt drop, as seen with other nucleotides when the cells transition into stationary phase.  相似文献   

5.
There are multiple pathways of intracellular protein degradation, and molecular determinants within proteins appear to target them for particular pathways of breakdown. We use red cell-mediated microinjection to introduce radiolabeled proteins into cultured human fibroblasts in order to follow their catabolism. A well-characterized protein, bovine pancreatic ribonuclease A (RNase A), is localized initially in the cytosol of cells after microinjection, but it is subsequently taken up and degraded by lysosomes. This lysosomal pathway of proteolysis is subject to regulation in that RNase A is taken up and degraded by lysosomes at twice the rate when serum is omitted from the culture medium. Subtilisin cleaves RNase A between residues 20 and 21, and the separated fragments are termed RNase S-peptide (residues 1–20) and RNase S-protein (residues 21–124). Microinjected RNase S-protein is degraded in a serum-independent manner, while RNase S-peptide microinjected alone shows a twofold increase in degradation in response to serum withdrawal. Furthermore, covalent linkage of S-peptide to other proteins prior to microinjection causes degradation of the conjugate to become serum responsive. These results show that recognition of RNase A and certain other proteins for enhanced lysosomal degradation during serum withdrawal is based on some feature of the amino-terminal 20 amino acids. The entire S-peptide is not required for enhanced lysosomal degradation during serum withdrawal because degradation of certain fragments is also responsive to serum. We have identified the essential region to be within residues 7–11 of RNase S-peptide (Lys-Phe-Glu-Arg-Gln; KFERQ). To determine whether related peptides exist in cellular proteins, we raised antibodies to the pentapeptide. Affinity-purified antibodies to KFERQ specifically precipitate 25–35% of cellular proteins, and these proteins are preferentially degraded in response to serum withdrawal. Computer analyses of known protein sequences indicate that proteins degraded by lysosomes at an enhanced rate in response to serum withdrawal contain peptide regions related, but not identical, to KFERQ. We suggest two possible peptide motifs related to KFERQ and speculate about possible mechanisms of selective delivery of proteins to lysosomes based on such peptide regions.  相似文献   

6.
Purified cathepsin B from porcine parathyroid glands was allowed to act upon radioactive bovine parathormone and proparathormone at various ratios of enzyme to substrate and for different times. The reaction products were isolated by ion exchange chromatography and analyzed by gel electrophoresis, amino acid composition, sequence analysis, and bioassay. The enzyme cleaved parathormone between residues 36 and 37 yielding a major carboxyl and amino fragment and appeared to cleave proparathormone at the same locus. The amino fragments were degraded further by removal of small peptides (possibly, di- or tripeptides) from their COOH termini. In contrast there was little if any degradation of the carboxyl fragment (residues 37 to 84). Despite the ease with which the enzyme cleaved the arginyl bond in the synthetic substrate benzyloxycarbonyl-Val-Lys-Lys-Arg-(4-methoxy)-2-naphthylamide, it did not remove the near homologous NH2-terminal hexapeptide extension of proparathormone (Lys-Ser-Val-Lys-Lys-Arg-R)--a reaction that would lead to the formation of parathormone from proparathormone. Purified liver cathepsin B cleaved the hormonal substrates in a fashion identical with that of the parathyroid enzyme.  相似文献   

7.
In the presence of tracer concentrations of extracellular leucine (5 μM), treatment of rat splenic lymphocyte suspensions in vitro with 1 μM dexamethasone for 2.5–4 h caused a 30–35% inhibition of [3H]leucine incorporation into protein. As the extracellular leucine concentration was raised to 5 mM, this inhibition was progressively reduced to 0–12%. This phenomenon correlated with a marked dependence on extracellular leucine concentration of the dexamethasone-dependent enlargement of free intracellular leucine pools in splenic lymphocytes: a 123% increase in pool size with tracer extracellular leucine; a 10% increase with 5 mM leucine. Varying extracellular leucine had no effect on: (1) nuclear [3H]dexamethasone binding by the cells; (2) the concentration of dexamethasone needed for half-maximal inhibition of [3H]leucine incorporation; (3) the time course of onset and maximal expression of the hormonal inhibition of [3H]leucine incorporation; or (4) the magnitude of dexamethasone-dependent inhibition of [3H]uridine incorporation into RNA by these cells. There was no detectable effect of dexamethasone on uptake and retention of [3H]leucine by the cells, regardless of the extracellular leucine concentration. Treatment of splenic lymphocytes for 4 h in vitro with 1 μM dexamethasone caused a small shift of ribosomes from larger aggregate polysomes to smaller forms. Thus, glucocorticoid-induced inhibition of amino acid incorporation in splenic lymphocytes is a multicomponent response, of which an actual decrease in protein synthesis is only a small part. Enlargement of free intracellular amino acid pools, probably resulting from increased protein degradation, is the major contributing factor to the hormonal inhibition of amino acid incorporation.  相似文献   

8.
Chemical analysis of kidney tissue from jerboa (Jaculus orientalis) during hibernation shows that the cortico-papillary gradient of Na+ ions is strongly reduced, whereas that of urea is completely suppressed. During the spontaneous rise in body temperature which occurs as the animal comes out of hibernation, the accumulation of Na+ in the papilla then in the medullary zones begins to increase from 25-30 degrees C body temperature, before the appearance of a urea gradient. This confirms the hypothesis that urea accumulation in the kidney medulla is coupled to active transport of sodium. This active transport may be partially dependent upon circulating ADH, circulating levels of which increase with increasing body temperature. Glomerular filtration in normothermic jaculus orientalis is 696 +/- 155 microliter . min-1 and urinary flow is relatively low in this desert species at 1.12 +/- 0.18 microliter . min-1. During hibernation at a body temperature between 7 and 8 degrees C glomerular filtration and urinary flow are not measurable. Glomerular filtration appears (51 microliter . min-1 at 26 degrees C) and increases at a temperature range where systemic blood pressure has already attained a normal level. This indicates that the reestablishment of glomerular filtration may be linked to intra-renal vasomotor events as is suggested by measurement of plasma renin activity during the coming out of hibernation.  相似文献   

9.
A working model is proposed accounting for the relationship between pools and protein synthesis in heterotrophic eukaryotic cells. A constant intracellular perfusion system moves amino acids past the selection mechanism for protein synthesis but operates quite independently of the latter. By maintaining as high a flux as possible, the cell maximizes its chances of retrieving all the required amino acids for protein synthesis even under adverse conditions such as gross imbalances or restriction of the availability of amino acids. The intracellular acid soluble pool is largely, probably completely for most amino acids, on the efferent limb of the proposed cyclical perfusion system, i.e. amino acids in this pool are no longer directly retrievable for protein synthesis.  相似文献   

10.
Intracellular collagen degradation by fibroblasts is an important but poorly understood pathway for the physiological remodeling of mature connective tissues. The objective of this study was to determine whether gingival fibroblasts that express endogenous alpha(2)beta(1) integrin, the collagen receptor, would exhibit the cellular machinery required for phagosomal maturation and collagen degradation. There was a time-dependent increase of collagen bead internalization and a time-dependent decrease of bead-associated alpha(2)beta(1) integrin after initial bead binding. beta-Actin and gelsolin associated transiently with beads (0-30 min) followed by LAMP-2 (60-240 min) and cathepsin B (30-240 min). Cytochalasin D prevented phagosome formation and also prevented the sequential fusion of early endosomes with lysosomes. Collagen bead-associated pH was progressively reduced from 7.25 to 5.4, which was contemporaneous with progressive increases in degradation of bead-associated collagen (30-120 min). Concanamycin blocked acidification of phagolysosomes and collagen degradation but not phagosome maturation. Phagosomal acidification was partly dependent on elevated intracellular calcium. These studies demonstrate that the cellular machinery required for intracellular collagen degradation in fibroblasts closely resembles the vacuolar system in macrophages.  相似文献   

11.
《The Journal of cell biology》1989,109(6):3129-3136
The fgr protooncogene is a member of the src family of protein tyrosine kinases. Recent studies have shown that normal myelomonocytic cells and tissue macrophages are the major sites of fgr mRNA expression. In the present study, we have identified the fgr protooncogene protein product in HL60 cells and have examined its expression as a function of HL60 cell maturation. Whether induced toward monocytic or granulocytic lineages, p55c-fgr accumulated in HL60 cells during maturation. In differentiated cells, the protein was active as a protein tyrosine kinase and was localized to peripheral cell membranes. Demonstration that a myristyl group was covalently bound to the protein probably accounted for its subcellular distribution. These findings establish developmental regulation of p55c-fgr in a lineage that represents its natural site of expression.  相似文献   

12.
The deposition of amyloid beta-protein (A beta or beta A4) is a key feature of Alzheimer's disease. Most studies have focused on the generation of A beta, but little is known about the degradation of A beta. Recent reports suggest that insulin-degrading enzyme (IDE) and neutral endopeptidase (NEP) are involved in the extracellular degradation of A beta. To date, however, far less is known about the degradation of intracellular A beta. To elucidate the protease(s) responsible for the degradation of intracellular A beta, we investigated the effect of various protease inhibitors on A beta in two distinct intracellular pools (i.e., nonionic detergent-soluble and detergent-insoluble pools) in Chinese hamster ovary cells. Treatment with thiol and metal inhibitors resulted in the accumulation of intracellular A beta and oligomers in detergent-soluble and -insoluble fractions. The overexpression of thiol-metalloprotease IDE resulted in a marked reduction in levels of detergent-soluble intracellular A beta as well as extracellular A beta 40 and A beta 42. Moreover, intracellular A beta in the detergent-insoluble fraction extracted with 70% formic acid or 6 M guanidine hydrochloride decreased markedly in the cells overexpressing IDE. In contrast, expression of NEP degraded the A beta in the detergent-insoluble fraction markedly and partially degraded extracellular A beta 40 and A beta 42, but not intracellular soluble A beta. Thiorphan, an inhibitor of NEP, accumulated, albeit to a lesser extent, in insoluble A beta but not in soluble A beta. Thus, IDE appears to degrade intracellular A beta more effectively than does NEP in both the detergent-soluble and -insoluble fractions.  相似文献   

13.
14.
15.
16.
17.
Intracellular degradation of newly synthesized collagen is quantitated by incubating fibroblasts with [14C]proline and determining the percentage of total [14C]hydroxyproline that is present in a low molecular weight fraction. Several problems make this difficult. (1) Commercial [14C]proline is often contaminated with [14C]hydroxyproline and must be purified before use. (2) Salt and [14C]proline interfere with the determination of [14C]hydroxyproline in the low molecular weight fraction and must be removed by preparative ion-exchange chromatography. (3) Epimerization of trans- to cis-hydroxyproline during acid hydrolysis is variable and must be taken into account. (4) Loss of [14C]hydroxyproline during processing varies; [3H]hydroxyproline can be used as an internal measure of recovery, even though tritium may be lost during hydrolysis. An analytic cation-exchange resin is used for the final quantitation of [14C]hydroxyproline in the low and high molecular weight fractions. With these methods, degradation of newly synthesized collagen can be determined with a precision of ± 3%.  相似文献   

18.
In eukaryotes, the ubiquitin-dependent protoelytic pathway is one of the major routes by which intracellular proteins are selectively destroyed. Recent work has shown that conjugation of ubiquitin to substrate proteins is mediated by a remarkably diverse array of enzymes. Proteolytic targeting may also be regulated at steps between ubiquitination of the substrate and its degradation to peptides by the multisubunit 26S protease. The complexity of the ubiquitin system suggests a central role for protein turnover in eukaryotic cell regulation.  相似文献   

19.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

20.
We have recently demonstrated that internalization of insulin is essential for insulin's action upon intracellular proteolysis (Draznin and Trowbridge 1982). In this study we have investigated the quantitative relationship between the rate of insulin internalization and its ability to inhibit intracellular proteolysis. We have used the acidification technique to separate surface bound 125I-insulin (sur) from internalized ligand (In). The In/Sur ratio plotted as a function of time permits the calculation of the rate of insulin internalization (K-e) (Draznin, Trowbridge and Ferguson 1984). Insulin in a dose dependent manner increased the rate of C14-glucose incorporation into glycogen and inhibited the rate of degradation of intracellular proteins prelabelled in vivo with C14-valine. When insulin internalization was blocked by phenylarsine oxide (10(-5) M), the amount of surface bound ligand and its effect on glucose incorporation into glycogen were unaffected whereas insulin's effect on intracellular proteolysis was markedly diminished. There was a direct and significant correlation between K-e and insulin induced inhibition of intracellular proteolysis (r = .72, P less than .05). The correlation between the amount of internalized insulin and intracellular proteolysis was also significant (r = .84, P less than .01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号