首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have used a morpholino-based knockdown approach to investigate the functions of a pair of zebrafish Hox gene duplicates, hoxb1a and hoxb1b, which are expressed during development of the hindbrain. We find that the zebrafish hoxb1 duplicates have equivalent functions to mouse Hoxb1 and its paralogue Hoxa1. Thus, we have revealed a 'function shuffling' among genes of paralogue group 1 during the evolution of vertebrates. Like mouse Hoxb1, zebrafish hoxb1a is required for migration of the VIIth cranial nerve branchiomotor neurons from their point of origin in hindbrain rhombomere 4 towards the posterior. By contrast, zebrafish hoxb1b, like mouse Hoxa1, is required for proper segmental organization of rhombomere 4 and the posterior hindbrain. Double knockdown experiments demonstrate that the zebrafish hoxb1 duplicates have partially redundant functions. However, using an RNA rescue approach, we reveal that these duplicated genes do not have interchangeable biochemical functions: only hoxb1a can properly pattern the VIIth cranial nerve. Despite this difference in protein function, we provide evidence that the hoxb1 duplicate genes were initially maintained in the genome because of complementary degenerative mutations in defined cis-regulatory elements.  相似文献   

3.
4.
Consequences of hoxb1 duplication in teleost fish   总被引:1,自引:0,他引:1  
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.  相似文献   

5.
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.  相似文献   

6.
Wang H 《Genetica》2009,136(1):149-161
Bmal1 (Brain and muscle ARNT like 1) gene is a key circadian clock gene. Tetrapods also have the second Bmal gene, Bmal2. Fruit fly has only one bmal1/cycle gene. Interrogation of the five teleost fish genome sequences coupled with phylogenetic and splice site analyses found that zebrafish have two bmal1 genes, bmal1a and bmal1b, and bmal2a; Japanese pufferfish (fugu), green spotted pufferfish (tetraodon) and Japanese medaka fish each have two bmal2 genes, bmal2a and bmal2b, and bmal1a; and three-spine stickleback have bmal1a and bmal2b. Syntenic analysis further indicated that zebrafish bmal1a/bmal1b, and fugu, tetraodon and medaka bmal2a/bmal2b are ancient duplicates. Although the dN/dS ratios of these four fish bmal duplicates are all <1, implicating they have been under purifying selection, the Tajima relative rate test showed that fugu, tetraodon and medaka bmal2a/bmal2b have asymmetric evolutionary rates, suggesting that one of these duplicates have been subject to positive selection or relaxed functional constraint. These results support the notion that teleost fish bmal genes were derived from the fish-specific genome duplication (FSGD), divergent resolution following the duplication led to retaining different ancient bmal duplicates in different fishes, which could have shaped the evolution of the complex teleost fish timekeeping mechanisms. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Pigmentary function and evolution of tyrp1 gene duplicates in fish   总被引:1,自引:0,他引:1  
The function of the tyrosinase‐related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species‐specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1‐deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.  相似文献   

8.
While the highly consistent gene order and axial colinear patterns of expression seem to be a feature of vertebrate hox gene clusters, this pattern may be less well conserved across the rest of the bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is 5'-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5-3'.) The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.  相似文献   

9.
We used the classic example of the duplicated zebrafish sox11a and -b loci to test the duplication, degeneration, complementation (DDC) model of genome evolution through whole genome duplication. While recent reports have demonstrated sub-partitioning of regulatory sequences in duplicated regions, a comparison of the regulatory capabilities of extant regulatory sequences derived from ancient ancestral elements has been scarce. Consistent with the DDC model, we find that ancestral regulatory elements distributed over several hundred kb were lost in either one or the other zebrafish duplicate, leading to subpartitioning. However, regulatory sequences kept as duplicates near both sox11 co-orthologs diverged in sequence from each other and from human elements and in the regulatory patterns they drive in transgenic zebrafish. Evolutionary analysis of the loci suggested that both zebrafish protein coding sox11 orthologs have been maintained by purifying selection, and have evolved at comparable rates, indicative of non-diverged protein functions. The duplicated regulatory elements, conversely, evolved with different divergence rates and degrees of subfunctionalization. These data show that regulatory evolution of gene expression patterns occurred both through differential loss as well as through regulatory sequence evolution in zebrafish versus human genomes.  相似文献   

10.
The conservation of hox genes as well as their genomic organization across the phyla suggests that this system of anterior–posterior axis formation arose early during evolution and has come under strong selection pressure. Studies in the split Hox cluster of Drosophila have shown that proper expression of hox genes is dependent on chromatin domain boundaries that prevent inappropriate interactions among different types of cis-regulatory elements. To investigate whether boundary function and their role in regulation of hox genes is conserved in insects with intact Hox clusters, we used an algorithm to locate potential boundary elements in the Hox complex of mosquito, Anopheles gambiae. Several potential boundary elements were identified that could be tested for their functional conservation. Comparative analysis revealed that like Drosophila, the bithorax region in A. gambiae contains an extensive array of boundaries and enhancers organized into domains. We analysed a subset of candidate boundary elements and show that they function as enhancer blockers in Drosophila. The functional conservation of boundary elements from mosquito in fly suggests that regulation of hox genes involving chromatin domain boundaries is an evolutionary conserved mechanism and points to an important role of such elements in key developmentally regulated loci.  相似文献   

11.
Deuterostomes comprise a monophyletic group of animals that include chordates, xenoturbellids, and the Ambulacraria, which consists of echinoderms and hemichordates. The ancestral chordate probably had 14 Hox genes aligned linearly along the chromosome, with the posterior six genes showing an independent duplication compared to protostomes. In contrast, ambulacrarians are characterized by a duplication of the posterior Hox genes, resulting in three genes known as Hox11/13a, Hox11/13b, and Hox11/13c. Here, we isolated 12 Hox genes from the hemichordate Balanoglossus misakiensis and found an extra Hox gene that has not been reported in hemichordates. The extra B. misakiensis gene was suggested to be Hox8 from paralog-characteristic residues in its hexapepetide motif and homeodomain and a comparison with Strongylocentrotus purpuratus Hox genes. Our data suggest that the ancestor of echinoderms and hemichordates may have had a full complement of 12 Hox genes.  相似文献   

12.
Neuropeptide Y (NPY) and peptide YY (PYY) are related 36-amino acid peptides. NPY is widely distributed in the nervous system and has several physiological roles. PYY serves as an intestinal hormone as well as a neuropeptide. We report here cloning of the npy and pyy genes in zebrafish (Danio rerio). NPY differs at only one to four amino acid positions from NPY in other jawed vertebrates. Zebrafish PYY differs at three positions from PYY from other fishes and at 10 positions from mammals. In situ hybridization showed that neurons containing NPY mRNA have a widespread distribution in the brain, particularly in the telencephalon, optic tectum, and rhombencephalon. PYY mRNA was found mainly in brainstem neurons, as reported previously for vertebrates as divergent as the rat and the lamprey, suggesting an essential role for PYY in these neurons. PYY mRNA was observed also in the telencephalon. These results were confirmed by immunocytochemistry. As in the human, the npy gene is located adjacent to homeobox (hox) gene cluster A (copy a in zebrafish), whereas the pyy gene is located close to hoxBa. This suggests that npy and pyy arose from a common ancestral gene in a chromosomal duplication event that also involved the hox gene clusters. As zebrafish has seven hox clusters, it is possible that additional NPY family genes exist or have existed. Also, the NPY receptor system seems to be more complex in zebrafish than in mammals, with at least two receptor genes without known mammalian orthologues.  相似文献   

13.
14.
15.
Changes in number and the genomic organization of Hox genes have played an important role in metazoan body-plan evolution. They make cluster(s), and in vertebrates, each cluster contains different number of Hox genes that have been classified into 13 groups. There are 39 Hox genes in four clusters on different chromosomes in the mammalian genome. In the fish, while 31 Hox genes in four clusters have been identified in pufferfish Fugu rubripes, 47 Hox genes in seven clusters exist in the zebrafish Danio rerio. To estimate the evolutionary origin of Hox organization in ray-finned fishes, we searched for Hox genes in the medaka fish Oryzias latipes, with a taxon thought to be widely separated from those of pufferfish and zebrafish. We synthesized various mixed oligonucleotides that can work as group-specific primers for PCR, then cloned and sequenced amplified fragments. Numbers of Hox genes identified in the present study were 2 for group 1, 2 for group 2, 1 for group 3, 3 for group 4, 6 for groups 5-7, 2 for group 8, 4 for group 9, 3 for group 10, 1 for group 12, and 3 for group 13. The primers specific for group 11 did not function in this study. Thus, at least 27 Hox genes are present in medaka genome, suggesting that the Hox gene complexity of the medaka genome is similar to that of the pufferfish rather than the zebrafish.  相似文献   

16.
In this study the molecular evolution of duplicated HoxA genes in zebrafish and fugu has been investigated. All 18 duplicated HoxA genes studied have a higher non-synonymous substitution rate than the corresponding genes in either bichir or paddlefish, where these genes are not duplicated. The higher rate of evolution is not due solely to a higher non-synonymous-to-synonymous rate ratio but to an increase in both the non-synonymous as well as the synonymous substitution rate. The synonymous rate increase can be explained by a change in base composition, codon usage, or mutation rate. We found no changes in nucleotide composition or codon bias. Thus, we suggest that the HoxA genes may experience an increased mutation rate following cluster duplication. In the non-Hox nuclear gene RAG1 only an increase in non-synonymous substitutions could be detected, suggesting that the increased mutation rate is specific to duplicated Hox clusters and might be related to the structural instability of Hox clusters following duplication. The divergence among paralog genes tends to be asymmetric, with one paralog diverging faster than the other. In fugu, all b-paralogs diverge faster than the a-paralogs, while in zebrafish Hoxa-13a diverges faster. This asymmetry corresponds to the asymmetry in the divergence rate of conserved non-coding sequences, i.e., putative cis-regulatory elements. These results suggest that the 5′ HoxA genes in the same cluster belong to a co-evolutionary unit in which genes have a tendency to diverge together. Reviewing Editor: Dr. Axel Meyer  相似文献   

17.
18.

Background  

Ever since the theory about two rounds of genome duplication (2R) in the vertebrate lineage was proposed, the Hox gene clusters have served as the prime example of quadruplicate paralogy in mammalian genomes. In teleost fishes, the observation of additional Hox clusters absent in other vertebrate lineages suggested a third tetraploidization (3R). Because the Hox clusters occupy a quite limited part of each chromosome, and are special in having position-dependent regulation within the multi-gene cluster, studies of syntenic gene families are needed to determine the extent of the duplicated chromosome segments. We have analyzed in detail 14 gene families that are syntenic with the Hox clusters to see if their phylogenies are compatible with the Hox duplications and the 2R/3R scenario. Our starting point was the gene family for the NPY family of peptides located near the Hox clusters in the pufferfish Takifugu rubripes, the zebrafish Danio rerio, and human.  相似文献   

19.
Nuclear re-organisation of the Hoxb complex during mouse embryonic development   总被引:17,自引:0,他引:17  
The spatial and temporal co-linear expression of Hox genes during development is an exquisite example of programmed gene expression. The precise mechanisms underpinning this are not known. Analysis of Hoxb chromatin structure and nuclear organisation, during the differentiation of murine ES cells, has lent support to the idea that there is a progressive 'opening' of chromatin structure propagated through Hox clusters from 3'to 5', which contributes to the sequential activation of gene expression. Here, we show that similar events occur in vivo in at least two stages of development. The first changes in chromatin structure and nuclear organisation were detected during gastrulation in the Hoxb1-expressing posterior primitive streak region: Hoxb chromatin was decondensed and the Hoxb1 locus looped out from its chromosome territory, in contrast to non-expressing Hoxb9, which remained within the chromosome territory. At E9.5, when differential Hox expression along the anteroposterior axis is being established, we found concomitant changes in the organisation of Hoxb. Hoxb organisation differed between regions of the neural tube that had never expressed Hoxb [rhombomeres (r) 1 and 2], strongly expressed Hoxb1 but not b9 (r4), had downregulated Hoxb1 (r5), expressed Hoxb9 but not Hoxb1 (spinal cord), and expressed both genes (tail bud). We conclude that Hoxb chromatin decondensation and nuclear re-organisation is regulated in different parts of the developing embryo, and at different developmental stages. The differential nuclear organisation of Hoxb along the anteroposterior axis of the developing neural tube is coherent with co-linear Hox gene expression. In early development nuclear re-organisation is coupled to Hoxb expression, but does not anticipate it.  相似文献   

20.
Bone morphogenetic protein 2 plays an important role in the regulation of osteoblast proliferation and differentiation. Phylogenetic analysis showed that the bmp2 ortholog evolved from the same ancestral gene family in vertebrates and was duplicated in teleost, which were named bmp2a and bmp2b. The results of whole-mount in situ hybridization showed that the expression locations of bmp2a and bmp2b in zebrafish were different in different periods (24 hpf, 48 hpf, 72 hpf), which revealed potential functional differentiation between bmp2a and bmp2b. Phenotypic analysis showed that bmp2a mutations caused partial rib and vertebral deformities in zebrafish, while bmp2b−/− embryos died massively after 12 hpf due to abnormal somite formation. We further explored the expression pattern changes of genes (bmp2a, bmp2b, smad1, fgf4, runx2b, alp) related to skeletal development at different developmental stages (20 dpf, 60 dpf, 90 dpf) in wild-type and bmp2a−/− zebrafish. The results showed that the expression of runx2b in bmp2a−/− was significantly downregulated at three stages and the expression of other genes were significantly downregulated at 90 dpf compared with wild-type zebrafish. The study revealed functional differentiation of bmp2a and bmp2b in zebrafish embryonic and skeletal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号