首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of heat stress on protein synthesis and fast axonal transport were examined in an in vitro bullfrog primary afferent neuron preparation. The magnitude of effect was determined for individual [35S]methionine-labelled protein species separated via two-dimensional gel electrophoresis. Elevation of temperature of the preparation from 18 degrees C to 33 degrees C caused a transient inhibition of synthesis of non-heat-shock proteins, whereas the synthesis of a 74,000-dalton protein increased to 927% of controls after 4 h. Similar prolonged stress conditions had no effect on the relative abundance of 36 individual, newly synthesized proteins undergoing fast axonal transport. A dramatic exception was represented by a 55,000-dalton glycoprotein whose fast transport was increased to 291% of control. The increase in transport of this protein during a time when synthesis and transport of other non-heat-shock proteins were not enhanced suggests that it may play a unique role in the early cellular events that mediate survival or thermotolerance in the neuron.  相似文献   

2.
The formation and maintenance of neuronal synapses is dependent on the active transport of material between the cell body and the axon terminal. Cytoplasmic dynein is one motor for microtubule-based axonal transport. Two pools of cytoplasmic dynein have been identified in the axon. They are distinguished by their intermediate and light intermediate chain subunits. Each pool is transported at different rates down the axon in association with different proteins or organelles. This review presents several models to discuss the potential functional roles of these different pools of cytoplasmic dynein during axonal transport.  相似文献   

3.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   

4.
Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope–labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study, we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first-order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates.  相似文献   

5.
We have studied the fate of neurofilament proteins (NFPs) in mouse retinal ganglion cell (RGC) neurons from 1 to 180 d after synthesis and examined the proximal-to-distal distribution of the newly synthesized 70-, 140-, and 200-kD subunits along RGC axons relative to the distribution of neurofilaments. Improved methodology for intravitreal delivery of [3H]proline enabled us to quantitate changes in the accumulation and subsequent decline of radiolabeled NFP subunits at various postinjection intervals and, for the first time, to estimate the steady state levels of NFPs in different pools within axons. Two pools of newly synthesized triplet NFPs were distinguished based on their kinetics of disappearance from a 9-mm "axonal window" comprising the optic nerve and tract and their temporal-spatial distribution pattern along axons. The first pool disappeared exponentially between 17 and 45 d after injection with a half-life of 20 d. Its radiolabeled wavefront advanced along axons at 0.5-0.7 mm/d before reaching the distal end of the axonal window at 17 d, indicating that this loss represented the exit of neurofilament proteins composing the slowest phase of axoplasmic transport (SCa or group V) from axons. About 32% of the total pool of radiolabeled neurofilament proteins, however, remained in axons after 45 d and disappeared exponentially at a much slower rate (t 1/2 = 55 d). This second NFP pool assumed a nonuniform distribution along axons that was characterized proximally to distally by a 2.5-fold gradient of increasing radioactivity. This distribution pattern did not change between 45 and 180 d indicating that neurofilament proteins in the second pool constitute a relatively stationary structure in axons. Based on the relative radioactivities and residence time (or turnover) of each neurofilament pool in axons, we estimate that, in the steady state, more neurofilament proteins in mouse RGC axons may be stationary than are undergoing continuous slow axoplasmic transport. This conclusion was supported by biochemical analyses of total NFP content and by electron microscopic morphometric studies of neurofilament distribution along RGC axons. The 70-, 140-, and 200-kD subunits displayed a 2.5-fold proximal to distal gradient of increasing content along RGC axons. Neurofilaments were more numerous at distal axonal levels, paralleling the increased content of NFP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Dimethylallyl diphosphate (DMADP) and geranyl diphosphate (GDP) are the last precursors of isoprene and monoterpenes emitted by leaves, respectively. DMADP and GDP pools were measured in leaves of plants emitting isoprene (Populus alba), monoterpenes (Quercus ilex and Mentha piperita), or nonemitting isoprenoids (Prunus persica). Detectable pools were found in all plant species, but P. persica showed the lowest pool size, which indicates a limitation of the whole pathway leading to isoprenoid biosynthesis in nonemitting species. The pools of DMADP and GDP of nonemitting, isoprene-emitting, and monoterpene-emitting species were partially labeled (generally 40%-60% of total carbon-incorporated (13)C) within the same time by which volatile isoprenoids are fully labeled (15 min). This indicates the coexistence of two pools for both precursors, the rapidly labeled pool presumably occurring in chloroplasts and thereby synthesized by the methylerythritol phosphate pathway and the nonlabeled pool presumably located in the cytosol and synthesized by the mevalonic pathway. In M. piperita storing monoterpenes in specialized leaf structures, the GDP pool remained totally unlabeled, indicating either that monoterpenes are totally formed by the mevalonic pathway or that labeling occurs slowly in comparison to the large pool of stored monoterpenes in this plant. The pools of DMADP and GDP increased during the season (from May to July) but decreased when the leaf was darkened or exposed to very high temperature. In the dark, the pool of DMADP of the isoprene-emitting species decreased faster than the pool of GDP. However, after 6 h of darkness, both pools were depleted to about 10% of the pool size in illuminated leaves. This indicates that both the chloroplastic and the cytosolic pools of precursors are depleted in the dark. When comparing measurements over the season and at different temperatures, an inverse correlation was observed between isoprene emission by P. alba and the DMADP pool size and between monoterpene emission by Q. ilex and the GDP pool size. This suggests that the pool size does not limit the emission of isoprenoids. Rather, it indicates that the flux of volatile isoprenoids effectively controls the size of their pools of precursors.  相似文献   

7.
The transport of cytoplasmically synthesized mitochondrial proteins was investigated in whole cells of Neurospora crassa, using dual labelling and immunological techniques. In pulse and pulse-chase labelling experiments the mitochondrial proteins accumulate label. The appearance of label in mitochondrial protein shows a lag relative to total cellular protein, ribosomal, microsomal and cytosolic proteins. The delayed appearance of label was also found in immunoprecipitated mitochondrial matrix proteins, mitochondrial ribosomal proteins, mitochondrial carboxyatractyloside-binding protein and cytochrome c. Individual mitochondrial proteins exhibit different labelling kinetics. Cycloheximide inhibition of translation does not prevent import of proteins into the mitochondria. Mitochondrial matrix proteins labelled in pulse and pulse-chase experiments can first be detected in the cytosol fraction and subsequently in the mitochondria. The cytosol matrix proteins and those in the mitochondria show a precursor-product type relationship. The results suggest that newly synthesized mitochondrial proteins exist in an extra-mitochondrial pool from which they are imported into the mitochondria.  相似文献   

8.
Chromatin-associated non-histone proteins of the sea urchin embryo are heterogeneous, and undergo qualitative as well as quantitative changes throughout early development. The rate of synthesis of these proteins is fairly constant to the pluteus stage and, in contrast to histone synthesis, does not parallel changes in the rates of synthesis of DNA. Evidence for a pool of chromatin-associated nonhistone proteins is provided by following the kinetics of entry into chromatin of labeled protein in pulse-chase experiments of prolonged duration. This pool is synthesized during cleavage and some non-histone proteins continue to associate with chromatin until gastrulation. In addition, different rates of entry of non-histone proteins into chromatin could be detected at different stages.  相似文献   

9.
Reversal of axonal transport at a nerve crush.   总被引:5,自引:0,他引:5  
Abstract— —We have compared retrograde axonal transport of 3H-labeled protein in normal rat motor and sensory axons, and axons which were injured by a distal ligation of the sciatic nerve. After injection of L-[3H]leucine into the vicinity of the neuron cell bodies, labeled protein was transported into the axons. A premature return of protein towards the cell bodies occurred in the injured axons, which we interpret as a reversal of axonal transport occurring at the site of injury. We estimate that reversal of transport occurred within 1.9–2.4 h of the arrival of labeled protein at the injury, and that the minimum velocity of the subsequent retrograde transport was 112–133 mm day?1. The ability of the injured axons to reverse transport developed about 0.8 h after making the injury. A large fraction of the orthograde transported protein was returned towards the cell body: it is estimated that by 28 h after labeled protein in sensory axons reached the injury, 46% of the3H-labeled protein originally transported to the injury site had been returned. In intact sensory nerves at this time only 15% of the transported protein had returned. It is suggested that axonal injury produces a sudden increase in the return of newly synthesized protein to the cell body, and that this might serve as a signal for chromatolysis.  相似文献   

10.
Inhibition of ribonucleic acid synthesis in Escherichia coli 15 TAU bar with rifampin or streptolydigin leads to large increases in the sizes of cellular ribonucleoside and deoxyribonucleoside triphosphate pools. Inhibition of protein synthesis leads to increases in the sizes of all nucleoside triphosphate pools except the guanosine triphosphate and deoxyguanosine triphosphate pools; a decrease in the size of the latter pool may be responsible for the slowing of deoxyribonucleic acid replication fork movement observed in this strain in the absence of protein synthesis. Analysis of the kinetics of incorporation of labeled precursors into deoxyribonucleic acid and into cellular pools suggests that functional compartmentation of nucleotide pools exists, allowing the incorporation of exogenously supplied precursors into deoxyribonucleic acid without prior equilibration with the cellular pools.  相似文献   

11.
Pulse-labeling studies of slow axonal transport in many kinds of axons (spinal motor, sensory ganglion, oculomotor, hypoglossal, and olfactory) have led to the inference that axonal transport mechanisms move neurofilaments (NFs) unidirectionally as a single continuous kinetic population with a diversity of individual transport rates. One study in mouse optic axons (Nixon, R. A., and K. B. Logvinenko. 1986. J. Cell Biol. 102:647-659) has given rise to the different suggestion that a significant and distinct population of NFs may be entirely stationary within axons. In mouse optic axons, there are relatively few NFs and the NF proteins are more lightly labeled than other slowly transported slow component b (SCb) proteins (which, however, move faster than the NFs); thus, in mouse optic axons, the radiolabel of some of these faster-moving SCb proteins may confuse NF protein analyses that use one dimensional (1-D) SDS-PAGE, which separates proteins by size only. To test this possibility, we used a 2-mm "window" (at 3-5 mm from the posterior of the eye) to compare NF kinetics obtained by 1-D SDS-PAGE and by the higher resolution two-dimensional (2-D) isoelectric focusing/SDS-PAGE, which separates proteins both by their net charge and by their size. We found that 1-D SDS-PAGE is insufficient for definitive NF kinetics in the mouse optic system. By contrast, 2-D SDS-PAGE provides essentially pure NF kinetics, and these indicate that in the NF-poor mouse optic axons, most NFs advance as they do in other, NF-rich axons. In mice, greater than 97% of the radiolabeled NFs were distributed in a unimodal wave that moved at a continuum of rates, between 3.0 and 0.3 mm/d, and less than 0.1% of the NF population traveled at the very slowest rates of less than 0.005 mm/d. These results are inconsistent with the proposal (Nixon and Logvinenko, 1986) that 32% of the transported NFs remain within optic axons in an entirely stationary state. As has been found in other axons, the axonal transport system of mouse optic axons moves NFs and other cytoskeletal elements relentlessly from the cell body to the axon tip.  相似文献   

12.
CLIPs are microtubule plus end-associated proteins that mediate interactions required for cell polarity and cell division. Here we demonstrate that budding yeast Bik1, unlike its human ortholog CLIP-170, is targeted to the microtubule plus end by a kinesin-dependent transport mechanism. Bik1 forms a complex with the kinesin Kip2. Fluorescently labeled Bik1 and Kip2 comigrate along individual microtubules. Bik1 exists in distinct intracellular pools: a stable pool at the spindle pole body that is depleted during cell cycle progression, a soluble pool from which Bik1 can be recruited during microtubule initiation, and a dynamic plus end pool maintained by Kip2. Kip2 stabilizes microtubules by targeting Bik1 to the plus end and Kip2 levels are controlled during the cell cycle. As with Bik1, the targeting of dynein to the microtubule plus end requires Kip2. These findings reveal a central role for Kip2-dependent transport in the cell cycle control of microtubule dynamics and dynein-dependent motility.  相似文献   

13.
HeLa cells take up Phe and two of its ring halogenated derivatives (pFPhe and pClPhe) with rpaidity, concentrating them against the external medium both at 4 and 37 degrees C. The majority of amino acid (greater than 90%) is accumulated without energy expenditures at 4 degrees C, and can be quickly discharged by normal cell washing procedures in saline. At 37 degrees C the freely-diffusible (FDP) pool is accompanied by another which develops more slowly and cannot diffuse out freely during washings with saline but is extractable with trichloracetic acid (the slowly-diffusible pool, SDP, or more conventionally, the acid-soluble pool). Both of the analogues produced larger pools of the latter type than Phe itself from external concentrations ranging from 10(-5) to 10(-3) M. The incorporation of pFPhe into proteins over these same concentrations ranged from 30 to 90--95% of Phe incorporation, whereas pClPhe showed negligible incorporation. From these and similar analyses it can be concluded that amino acid pools form largely independently of protein synthesis, but bear a close relationship with the external amino acid concentration. The fraction of total uptake into cellular pools entering the SDP was relatively constant over a wide range of external concentrations. pFPhe incorporation into cellular proteins produced the same labelling distribution of Phe. It appears to ener all proteins, the vast majority of which have similar half-lives and turnover rates to Phe proteins. In competition, little or no interference was experienced between the analogue and Phe in uptake and pool formation until excessive amounts of one or the other were present (50--100x). By contrast, incorporation of pFPhe into protein was markedly reduced by the presence of Phe. However, the development of normal or large pools of pFPhe or Phe in cells prior to 3H-Phe incorporation did not affect the linear incorporation pattern of the radioisotope into protein. The relationship of pools to protein synthesis is discussed, and it is concluded that, although the SDP could contain potential precursor molecules for protein synthesis, it does not usually act as the direct supplier of amino acid for protein synthesis. Alternative explanations for precursor supply are discussed.  相似文献   

14.
Functions of retrograde axonal transport   总被引:2,自引:0,他引:2  
Retrograde axonal transport conveys materials from axon to cell body. One function of this process is recycling of materials originally transported from cell body to axon. In motoneurons, 50% of fast-transported protein is returned. Reversal probably occurs mainly at nerve terminals and, for labeled proteins, is nonselective. Proteolysis is not required, although changes in tertiary protein structure may occur with a repackaging of molecules in organelles different from those in which they were anterograde-transported. A second function is transfer of information about axonal status and terminal environment. Premature reversal of transport adjacent to an axon injury may be a component of a signal that initiates cell body chromatolysis. Transport of target cell-derived molecules with trophic effects on the cell body is exemplified by nerve growth factor transport in neurons dependent on it, and is probably a widespread phenomenon in the developing nervous system. Disorders in retrograde transport or reversal occur in some experimental neuropathies, and certain viruses, as well as tetanus toxin, may gain access to the central nervous system by this route.  相似文献   

15.
The synthesis of the 50S genomic RNA and strucural proteins of Sendai virus was examined with respect to their utilization in virus assembly. It was found that during a single cycle of infection, 50S RNA was synthesized before the structural proteins and that both RNA and protein were synthesized 2 to 4 h before their appearance in released virions. Pulse-chase labeling indicated that the NP and P proteins synthesized early and the M and F proteins synthesized late were preferentially incorporated into virus relative to the other viral proteins. The kinetics of incorporation of pulse-labeled NP protein suggested that it was withdrawn from a relatively large pool whereas the M protein appeared to be present in a relatively small pool in the cytoplasm. Further, it was possible to chase pulse-labeled M protein, but not NP protein, from the cell during an 8-h time period.  相似文献   

16.
Synthesis and Turnover of Cytoskeletal Proteins in Cultured Astrocytes   总被引:17,自引:10,他引:7  
Abstract: We previously reported that the cytoskeleton of rat astrocytes in primary culture contains vimentin, glial fibrillary acidic protein (GFAP), and actin. These proteins were found in a fraction insoluble in Triton X-100 and thought to be assembled in filamentous structures. We now used primary astrocyte cultures to study the kinetics of synthesis and turnover of these cytoskeletal proteins. The intermediate filament proteins were among the most actively synthesized by astrocytes. High levels of synthesis were detectable by the third day of culture in the early log phase of growth, and the pattern of labeling at day 3 was similar to that at 14 days when the cultures had reached confluency. In short-term incorporation experiments vimentin, GFAP, and actin in the Triton-insoluble fraction were labeled within 5 min after exposure of the cultures to radioactive leucine. We did not detect any saturation of labeling for up to 6 h of incubation. The turnover of filament proteins studied by following the decay of radioactivity from prelabeled vimentin, GFAP, and cytoskeletal actin displayed biphasic decay kinetics for all three proteins. In the initial phase a fast-decaying pool with a half-life of 12–18 h contributed about 40% of the total activity in each protein. A major portion, about 60%, of each protein, however, decayed much more slowly, exhibiting a half-life of about 8 days.  相似文献   

17.
I Nadelhaft 《Biophysical journal》1976,16(10):1125-1130
A phenomenological model of the process of fast axoplasmic transport is presented. The process was conceived of as occurring in two parts: (a) synthesis and storage of material in a cytoplasmic pool; (b) release from the pool and transport distally along the axon. Considering the fate of labeled proteins, the activity at points along the axon relfects events occurring earlier within the pool through the relationship: g(x,t) = const f(t - x/v); where g(x,t) represents axonal activity, f(t) the pool's activity, and v is the transport speed. Using the idea that when there is no further input of radioactivity into the pool its activity declines exponentially due to export of material to the axon. I generalized this concept to the case where activity enters and leaves the pool simultaneously. The model contains two parameters: the relative turnover rate of the pool, alpha, and T, an interval characteristic of the time of synthesis. From this model, the experimental data is unfolded and yields values for these parameters of alpha = 0.004 min-1 and T approximately 60 min.  相似文献   

18.
In neurons, cytoplasmic dynein is synthesized in the cell body, but its function is to move cargo from the axon back to the cell body. Dynein must therefore be delivered to the axon and its motor activity must be regulated during axonal transport. Cytoplasmic dynein is a large protein complex composed of a number of different subunits. The dynein heavy chains contain the motor domains and the intermediate chains are involved in binding the complex to cargo. Five different intermediate chain polypeptides, which are the result of the alternative splicing of the two intermediate chain genes, have been identified. We have characterized two distinct pools of dynein that are transported from the cell body along the axon by different mechanisms. One pool, which contains the ubiquitous intermediate chain, is associated with the membranous organelles transported by kinesin in the fast transport component. The other pool, which contains the other developmentally regulated intermediate chains, is transported in slow component b. The mechanism of dynein regulation will therefore depend on which pool of dynein is recruited to function as the retrograde motor. In addition, the properties of the large pool of dynein associated with actin in slow component b are consistent with the hypothesis that this dynein may be the motor for microtubule transport in the axon.  相似文献   

19.
We labeled gametes of Chlamydomonas with 10-min pulses of 35SO4(-2) before and at various times after deflagellation, and isolated whole cells and flagella immediately after the pulse. The labeled proteins were separated by one- or two-dimensional gel electrophoresis, and the amount of isotope incorporated into specific proteins was determined. Individual proteins were identified with particular structures by correlating missing axonemal polypeptides with ultrastructural defects in paralyzed mutants, or by polypeptide analysis of flagellar fractions. Synthesis of most flagellar proteins appeared to be coordinately induced after flagellar amputation. The rate of synthesis for most quantified proteins increased at least 4- to 10-fold after deflagellation. The kinetics of synthesis of proteins contained together within a structure (e.g., the radial spoke proteins [RSP] ) were frequently similar; however, the kinetics of synthesis of proteins contained in different structures (e.g., RSP vs. alpha- and beta- tubulins) were different. Most newly synthesized flagellar proteins were rapidly transported into the flagellum with kinetics reflecting the rate of growth of the organelle; exceptions included a central tubule complex protein (CT1) and an actinlike component, both of which appeared to be supplied almost entirely from pre-existing, unlabeled pools. Isotope dilution experiments showed that, for most quantified axonemal proteins, a minimum of 35-40% of the polypeptide chains used in assembling a new axoneme was synthesized during regeneration; these proteins appeared to have predeflagellation pools of approximately the same size relative to their stoichiometries in the axoneme. In contrast, CT1 and the actinlike protein had comparatively large pools.  相似文献   

20.
—Protein synthesis in an identified molluscan neurosecretory cell of the land snail, Otala lactea was examined using three different types of polyacrylamide gel electrophoresis. Cells taken from active snails synthesized specific low molecular weight proteins while those from aestivated snails did not. Most of the newly synthesized low molecular weight proteins in the active snails were lost from the cell body when the preparations was chased for 19 h in label-free enriched medium in the presence of anisomycin, an inhibitor of protein synthesis. If colchicine, a blocker of axonal transport, was included in the chase medium, the proteins present following a pulse were largely replaced by smaller molecular weight species. The results suggest that specific low molecular weight proteins are converted to smaller species and then transported from the cell body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号