首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates a rapid increase in ornithine decarboxylase (EC 4.1.1.17; ODC) activity in target cells. Here we demonstrate that this process involves a rapid accumulation of ODC mRNA, which is maximal 3 h after treatment (three- to eightfold greater than control cells) and decays to control levels within 18 h. Stimulation of ODC mRNA by TPA is blocked by phorbol dibutyrate down-regulation of protein kinase C (PKC). ODC mRNA was also induced by the PKC activators, phospholipase C and 1-oleoyl-2-acetyl-rac-glycerol, and blocked by kinase inhibitors (trifluoroperazine, H7, and palmitoyl-L-carnitine), consistent with a requirement for PKC activation in the induction mechanism. However, the non-PKC-specific protein kinase inhibitor HA1004 also suppressed expression of ODC mRNA in response to TPA, under conditions where it did not inhibit PKC, suggesting that additional kinases may be involved in the intracellular signalling process. The stability of the ODC mRNA (control value = 6.2 +/- 1.6 h) is not significantly changed by either TPA (5.7 +/- 0.8 h) or by cycloheximide (6.0 h). These results are inconsistent with any contribution from altered mRNA half-life towards the accumulation of ODC mRNA following treatment with phorbol ester tumor promoters.  相似文献   

2.
3.
We have shown previously that in rat tracheal epithelial 2C5 cells the induction of ornithine decarboxylase (ODC) activity and the reduction in the binding of epidermal growth factor (EGF) by diacylglycerol is related to the activation of protein kinase C. In this paper we analyse the action of retinoic acid (RA) on these two parameters in order to determine whether RA acts on the level of protein kinase C. RA inhibits the induction of ODC activity by diacylglycerol (sn-1,2-dioctanoylglycerol) in a dose- and time-dependent manner. A biologically inactive analog of RA has no effect on this induction. RA does not affect the activation of protein kinase C by diacylglycerol in an in vitro assay. In contrast to the effect on ODC induction, RA does not counteract the reduction in EGF binding induced by diacylglycerol. These results are consistent with the concept that RA does not act at the level of protein kinase C and inhibits ODC induction during a stage following protein kinase C activation.  相似文献   

4.
Ornithine decarboxylase (ODC) activity usually rises to a peak a few hours after a trophic stimulus. The stimulation of ODC has been shown to depend on extracellular calcium in several in vitro eukaryotic systems. We have investigated the effect of calcium concentration on ODC activity and have found that ODC is stimulated when CaCl2 alone is added to calcium-deprived cells. Epithelial cells from calf esophagus were cultured and grown until stratified. Replacement of medium with fresh serum-free medium resulted in stimulation of ODC activity, which peaked at 4 hours and declined to basal level by 10 hours. Subsequent depletion of Ca2+ either by addition of ethylene glycol bis (beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) or by replacement of medium with Ca2+-free medium, resulted in obliteration of ODC activity 4 hours later. Conversely, cultures in which medium was replaced with Ca2+-free medium and at 10 hours were repleted with Ca2+ (either by addition of CaCl2 or by replacement of medium with Ca2+-containing medium) exhibited a pronounced elevation of ODC activity 4 hours later. ODC activity peaked at 6 hours after the addition of CaCl2 and declined by 8 hours. The effect was elicited by a wide range of concentrations of added Ca2+ from 0.1 mM to 4.0 mM, but was maximal at 1.0 mM. ODC activity was totally abolished if either cycloheximide (10 micrograms/ml) or putrescine (10 mM) was added to cultures immediately prior to Ca2+ addition. Actinomycin D (2, 5, or 10 micrograms/ml) added 30 minutes before Ca2+ did not prevent the stimulation of ODC by added Ca2+. Stimulation by Ca2+ is dependent on (1) absence of Ca2+ during the initial 10-hour incubation and (2) duration of incubation in Ca2+-free medium prior to Ca2+ replenishment. The results indicate that Ca2+ can increase ODC in epithelial cells exposed to Ca2+-depleted medium and that the increase in ODC depends on protein synthesis but is not inhibited by actinomycin D.  相似文献   

5.
The induction of ornithine decarboxylase activity was studied in a rat hepatoma cell line (Reuber H35) incubated with a group of structurally-related phorbol ester analogues. A single application of 1.6 μM of tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) to H35 cells caused a dramatic increase in the activity of ornithine decarboxylase. The stimulation of the enzyme activity was rapid but transient, peaking at 4 to 5 hr with a value which was 116-fold greater than control and then declining to the basal level after 8 hr. In addition, the increase in ODC activity was dependent upon the concentration of TPA added to the culture medium and the EC50 was estimated to be about 2.63 × 10?7 M. Our studies of the effect of various phorbol ester analogues on the H35 ODC activity indicated an apparent correlation between the ability of phorbol ester derivatives to induce ODC activity in the H35 cells and their activity to promote papilloma formation in the mouse skin in that the various derivatives possessed the following relative abilities to increase ODC activity: TPA > PDB > PDA > 4 α-P > 4 α-PDD. Concurrent addition of either actinomycin D or cycloheximide abolished the increase in ODC activity after TPA treatment. Changes of intracellular concentrations of polyamines, particularly putrescine, were in good agreement with the increase in ODC activity in response to TPA: a 10-fold increase in putrescine over the control level was observed at 6 hr. Our data suggest that cultured Reuber H35 hepatoma cells exhibit a marked and specific response to the phorbol ester tumor promoters and may be of great value in studying the biochemical mechanism of ODC induction by these agents.  相似文献   

6.
Administration of phorbol 12-myristate 13-acetate (PMA) to rats in vivo resulted in the induction of ornithine decarboxylase activity in the liver which could be blocked by preinjection of indomethacin, a cyclooxygenase inhibitor. In vitro administration of PMA to primary cultures of rat parenchymal cells did not lead to an induction of ornithine decarboxylase activity. It was investigated to what extent non-parenchymal liver cells could play an intermediary role in the expression of the PMA effect on ornithine decarboxylase activity in parenchymal liver cells. Addition of conditioned medium from PMA-activated Kupffer cells to cultured parenchymal cells led to the induction of ornithine decarboxylase activity in parenchymal cells. This effect was not observed with conditioned medium from untreated Kupffer cells or from Kupffer cells treated with PMA plus indomethacin. Conditioned media from PMA-treated or untreated endothelial liver cells were ineffective in the induction of ornithine decarboxylase activity in parenchymal liver cells. Prostaglandin D2, the main eicosanoid produced by Kupffer cells, was able to stimulate the synthesis of ornithine decarboxylase in parenchymal liver cells (up to 40-fold) in a dose-dependent way. Prostaglandin (PG) D2 appeared to be a more potent inducer of ornithine decarboxylase activity in parenchymal cells than PGE1 and PGE2. It is concluded that intercellular communication inside the liver mediated by prostaglandins derived from activated Kupffer cells may form a mechanism to induce synthesis of specific proteins in parenchymal cells.  相似文献   

7.
Summary The thymus of young rats contained a high basal activity of ornithine decarboxylase (ODC). Treatment with zinc sulphate caused a slight increase of thymic ODC activity within 6 hours and a more marked enhancement (three-fold) in the spleen 24 h after treatment. In spite of the high activity of thymic ODCin vivo, ODC was not detectable in primary cultures of rat thymocytes, but was early and largely induced after treatment with Concanavalin A (Con A). The presence of 0.1 mM zinc in the medium increased the response of ODC to Con A. This effect of zinc in mitogen activated thymocytes may be due to the stabilization of ODC, which was found to decay with a half life of 65 min after the block of protein synthesis with cycloheximide. On the contrary in absence of zinc the half life of the enzyme was 40 min, as in the rat thymus in vivo.Zinc alone, at 0.1 mM concentration, did not affect ODC activity in resting thymocytes during the early times, but the metal was able to cause an increase of the enzyme activity after 4–6 days of culture. Other heavy metals such as mercury, cadmium and copper provoked a late increase of ODC activity, but their action was evident only at dosages which were toxic for the cells.  相似文献   

8.
In many cells, protein kinase C (PKC) activation inhibits cellular phospholipase C thereby preventing receptor-mediated phosphatidylinositol (PI) metabolism. In T lymphocytes, the T cell antigen receptor (Ti)/CD3 complex regulates PI hydrolysis and we have examined the consequences of PKC activation on Ti/CD3-mediated PI metabolism in human peripheral blood-derived T lymphocytes (T lymphoblasts) and the leukemic T cell line Jurkat. In Jurkat cells, PI metabolism after Ti/CD3 stimulation, is inhibited by PKC activation. PKC activation also inhibits calcium-induced PI metabolism in permeabilized Jurkat cells. In marked contrast, PI metabolism after Ti/CD3 stimulation in T lymphoblasts, is not inhibited by PKC activation. Moreover, in permeabilized T lymphoblasts PI metabolism can be induced by calcium in synergy with guanine 5'-O-(3-thiotrisphosphate) via a PKC-insensitive mechanism. The different effect of PKC stimulation on PI metabolism in Jurkat cells and T lymphoblasts reveals heterogeneity of PLC regulation in T lymphocytes. The data also indicate that the role of PKC as a regulator of Ti/CD3 signal transduction can differ depending on cell type.  相似文献   

9.
The possible role of calcium ions in the induction of ornithine decarboxylase (ODC) in rat hepatoma cells in culture (HTC) has been investigated by manipulating cellular calcium levels as follows: a) use of the calcium chelating agent EGTA to inhibit induction of ODC by dibutyryl cyclic AMP (cAMP), b) addition of Ca++ to reverse the inhibition of cAMP induction of ODC by EGTA, c) use of a calcium ionophore in the presence of Ca++ to induce ODC. In each case there was positive evidence for the participation of Ca++ in the induction of ODC.  相似文献   

10.
Various hormonal and non-hormonal agents were tested for their ability to induce ornithine decarboxylase (EC 4.1.1.17) in primary cultures of fetal rat liver cells that retain many of the differentiated functions of hepatocytes. The only agents to induce ornithine decarboxylase in this cell type were fetal calf serum, prostaglandin E1 and cyclic AMP derivatives. Also, the amino acid arginine would induce ornithine decarboxylase in this cell type following arginine starvation for 24 h. These observations are in contrast to the wide range of hormones, e.g. insulin, hydrocotisone, glucagon and growth hormone, that can induce ornithine decarboxylase in vivo in the adult rat liver but which are all without effect on fetal rat liver cells.  相似文献   

11.
Polyamines are associated with fundamental metabolic and functional steps in cell metabolism. The activity of ornithine decarboxylase, the key enzyme in polyamine metabolism, was followed during the preparation of rat liver parenchymal cells and in the isolated cells during incubation. In experiments in which ornithine decarboxylase was not induced in vivo, enzyme activity dropped to barely measurable values during the preparation. An even more drastic loss of enzyme activity was noted in livers in which ornithine decarboxylase activity was stimulated in vivo 20-40fold by previous injection of bovine growth hormone, or thioacetamide or elevated because of circadian rhythmical changes of the enzyme activity. Within the first 20 min of liver perfusion to disintegrate the tissue, ornithine decarboxylase activity decreased by up to 80%. The presence of bovine growth hormone during cell preparation cannot prevent the loss of enzyme activity. Incubation of the isolated cells for periods of up to 240 min did not restore the enzyme activity. Furthermore, incubation of the cells with bovine growth hormone did not induce ornithine decarboxylase, even though the medium was supplemented with amino acids in physiological concentrations. During normal liver perfusion and in contrast to the situation with isolated cells, there is no loss of enzyme activity but a small rise. Following pretreatment of the animals with bovine growth hormone or thioacetamide the highly stimulated activity of ornithine decarboxylase declined slowly during liver perfusion, but never dropped to values lower than normal for perfusion periods of up to 240 min. Moreover, in the intact perfused organ ornithine decarboxylase remains responsive to bovine growth hormone. The experiments demonstrate that enzymatic tissue dispersion by collagenase in particular or the preparation of isolated cells in general drastically alters the metabolic and functional state of rat liver parenchymal cells.  相似文献   

12.
13.
The potent tumor promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) is alos an excellent mitogen for 3T3 cells. We have previously isolated two independent variants, 3T3-TNR-2 and 3T3-TNR-9, that are unable to divide in response to TPA (Butler-Gralla and Herschman, 1981). We have now tested tow components of the pleiotypic response, elevation of 2-deoxyglucose uptake and ornithine decarboxylase induction, in these cells. Basal levels of 2-deoxyglucose uptake were nearly tenfold higher in confluent 3T3-TNR-2 and 3T3-TNR-9 cells than in 3T3 cells. In contrast, basal ornithine decarboxylase levels were five- to tenfold lower in the variants. TPA stimulation of 2-deoxyglucose uptake was as great in absolute terms in the variant cell lines as that of 3T3 cells but was only half that observed with serum. TPA was unable to induce any elevation of ornithine decarboxylase in 3T3-TNR-9 cells. treated with TPA, the maximal specific activity in the variant was less than the unstimulated value for 3T3 cells.  相似文献   

14.
15.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide.  相似文献   

16.
Various hormonal and non-hormonal agents were tested for their ability to induce ornithine decarboxylase (EC 4.1.1.17) in primary cultures of fetal rat liver cells that retain many of the differentiated functions of hepatocytes. The only agents to induce ornithine decarboxylase in this cell type were fetal calf serum, prostaglandin E1 and cyclic AMP derivatives. Also, the amino acid arginine would induce ornithine decarboxylase in this cell type following arginine starvation for 24 h. These observations are in contrast to the wide range of hormones, e.g. insulin, hydrocortisone, glucagon and growth hormone, than can induce ornithine decarboxylase in vivo in the adult rat liver but which are all without effect on fetal rat liver cells.  相似文献   

17.
Ornithine induced more than 36-fold the ornithine decarboxylase activity in confined Ehrlich ascites tumour cells after 3.5 h of continuous perifusion with 0.5 mM ornithine; arginine and glutamine also induced the activity 3- and 4-fold, respectively. The addition of cycloheximide or actinomycin D antibiotics to the perifusion medium confirmed that the regulation of the enzyme synthesis takes place at the level of translation. Perifusion in the presence of 0.5. mM ornithine and 55, 25, and 10 μM histamine suppressed the induction by 91, 53, and 35%, respectively. Similar results were obtained in the presence of serotonin. Histidine also showed inhibitory effect but 5 mM histidine was required to produce 21% inhibition; other basic amino acids were ineffective.  相似文献   

18.
Treatment of guinea pig lymphocytes with Clostridium perfringens phospholipase C but not with Naja naja snake venom phospholipase A2 increased ornithine decarboxylase activity. The increase in ornithine decarboxylase activity was suppressed by actinomycin D or cycloheximide, suggesting that de novo syntheses of RNA and protein are necessary for the increase in the enzyme activity. These results suggest that the activation of phospholipase C rather than that of phospholipase A2 is responsible for induction of ornithine decarboxylase during lymphocyte transformation.  相似文献   

19.
The behaviour of ornithine decarboxylase activity and the changes of polyamine (spermidine and spermine) and putrescine concentrations in the rat retina during the postnatal development have been studied.In the first 12 days of life, when cellular division first and then cellular differentiation are known to occur in rat retina, polyamine concentrations and enzymic activity rise to and maintain their maximum values.After 12 days of life, putrescine and polyamine retinal levels are drastically reduced, and adult values are already reached at the age of 16 days. The adult level of spermine is six to seven times greater than the low values obtained for both putrescine and spermidine. This relatively high content of spermine could be related to the mechanism of perpetual renewal of photoreceptor outer segments.  相似文献   

20.
Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号