首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The inducing capacity of the vegetal hemisphere of early amphibian blastulae was studied by placing a Nucleopore filter (pore size 0.4 m) between isolated presumptive endoderm and animal (ectodermal) caps. The inducing effect was shown to traverse the Nucleopore membrane. The reacting ectoderm differentiated into mainly ventral mesodermal derivatives. Expiants consisting of five animal caps also formed dorsal mesodermal and neural structures. Those results together with data published elsewhere suggest that, in addition to a vegetalizing factor, different mesodermal factors must be taken into consideration for the induction of either the ventral or the dorsal mesodermal derivatives. The neural structures are thought to be induced by the primarily induced dorsal mesodermal tissue. Electron microscopic (TEM) examination did not reveal any cell processes in the pores of the filter. The results indicate that transmissible factors rather than signals via cytoplasmic contacts or gap junctions are responsible for the mesodermal induction of ectodermal cells. The data support the view that in normogenesis the mesoderm is determined by the transfer of inducing factors from vegetal blastomeres to cells of the marginal zone (presumptive mesodermal cells).  相似文献   

2.
3.
Embryos of Ambystoma mexicanum from the late morula to the late blastula stage were dissected and cultivated in varying combinations. The marginal zone (presumptive mesoderm) when isolated together with the vegetal region differentiated to notochord after dissection from early blastulae, but did not differentiate to other tissues. When isolated from middle to late blastulae, in addition myoblasts and mesenchyme were formed. The marginal zone isolated together with the animal region (presumptive ectoderm) differentiated to notochord, muscle, mesenchyme, renal tubules and mesothelium irrespective of the stage of dissection. Combination of isolated animal and vegetal regions did lead to the induction of mesodermal organs. The experiments suggest that further steps in the differentiation of mesodermal organs after the induction of mesoderm by the vegetalizing factor depend on factors from the animal region, which are involved in pattern formation.  相似文献   

4.
Our previous research has demonstrated that lens induction in Xenopus laevis requires inductive interactions prior to contact with the optic vesicle, which classically had been thought to be the major lens inductor. The importance of these early interactions has been verified by demonstrating that lens ectoderm is specified by the time it comes into contact with the optic vesicle. It has been argued that the tissues which underlie the presumptive lens ectoderm during gastrulation and neurulation, dorsolateral endoderm and mesoderm, are the primary early inductors. We show here, however, that these tissues alone cannot elicit lens formation in Xenopus ectoderm. Evidence is presented that presumptive anterior neural plate tissue (which includes the early eye rudiment) is an essential early lens inductor in Xenopus. The presence of dorsolateral mesoderm appears to enhance this response. These findings support a model in which an essential inductive signal passes through the plane of ectoderm during gastrula and early neurula stages from presumptive anterior neural tissue to the presumptive lens ectoderm. Since there is evidence for such interactions within a tissue layer in mesodermal and neural induction as well, this may be a general feature of the initial stages of determination of many tissues.  相似文献   

5.
F M Rosa 《Cell》1989,57(6):965-974
In frogs, mesoderm presumably derives from presumptive ectoderm by induction under the control of diffusible substances produced by the endoderm. To analyze the early phase of mesoderm induction, I have isolated cDNA copies of mRNAs induced in presumptive ectoderm by mesoderm inducing factor secreted by the XTC cell line. One of the inducible mRNAs encodes a homeodomain-containing protein that is likely to play a regulatory role in development. Mix.1 behaves as an immediate early response to induction, and its kinetics of expression suggest a major role for MBT in the control of inducible gene expression. Unexpectedly, Mix.1 is expressed mostly in the future endoderm, suggesting that endoderm may be formed by induction in a similar way as mesoderm.  相似文献   

6.
By the method of immunocytochemistry, using the polyclonal antibodies raised against the 1-29 N-terminal residues of TGF beta-1, we found that the protein could bind to the antibodies was present in the early embryos of Xenopus. The protein was named TGF beta-related protein. It was distributed mainly in the endoderm from blastula (stg. 7) to late neurula. In the blastula (stg. 8), the protein was localized in the vegetal hemisphere near the floor of the blastocoel [Plate I, Fig. 1]. In the early gastrula (stg. 10.5) [Plate I, Fig. 2], it was localized in the central part of the vegetal hemisphere. In late gastrula (stg. 12), it was mainly distributed around the gastrocoel [Plate I, Fig. 3], but the fluorescence in endoderm cells (ventral part beneath the gastrocoel) was stronger than in the mesoderm cells (dorsal part of the gastrocoel). In the early neurula (stg. 14), the whole endoderm displayed strong fluorescence and the part of dorsal mesoderm (presumptive somite & notochord) close to endoderm was also found to be positively stained [Plate I, Fig. 4,5], but the part close to neural plate was negative. In The late neurula (stg. 20) [Plate I, Fig. 6], it was found in the central area of yolk mass (endoderm cells). No positive stain was detected in the unfertilized egg, embryos earlier than stage and later than stage 20/21.2+ protein in early development.  相似文献   

7.
8.
Animal, vegetal, dorsal and ventral blastomeres of eight-cell embryos of the urodele Pleurodeles waltlii were isolated and cultured for 15 days. The four animal blastomeres produced vesicles delimited by an irregularly shaped epidermis. In all other explants, the formation of mesodermal structures occurred, which can be interpreted as the result of inductive interaction, occurring during segmentation, between the ectodermal animal cap and vegetal yolk mass. Primordial germ cells (PGCs), which formed in 78% of cases when the presumptive ventral half to the embryo was cultured, occurred in only 48% of cases when the two ventral vegetal blastomeres were cultured alone. The absence of PGCs in the explants emanating from the four vegetal blastomeres is thought to have been due to inhibition of differentiation by notochord. This hypothesis has been confirmed by culture experiments in which the addition of presumptive chordomesoderm of young gastrulae prevented the differentiation of PGCs under conditions in which they are normally formed. These observations suggest that, in urodeles, PGCs do not arise from cells segregated as early as the eight-cell stage, but are the product of later inductive interaction between ectoderm and endoderm.  相似文献   

9.
Neural induction is known to involve an interaction of ectoderm with dorsal mesoderm during gastrulation, but several kinds of studies have argued that competent ectoderm can also be neutralized via an interaction with previously neuralized tissue, a process termed homeogenetic neural induction. Although homeogenetic neural induction has been proposed to play an important role in the normal induction of neural tissue, this process has not been subjected to detailed study using tissue recombinants and molecular markers. We have examined the question of homeogenetic neural induction in Xenopus embryos, both in transplant and recombinant experiments, using the expression of two neural antigens to assay the response. When ectoderm that is competent to be neuralized is transplanted to the region adjacent to the neural plate of early neurula embryos, it forms neural tissue, as assayed by staining with antibodies against the neural cell adhesion molecule, N-CAM. Transplants to the ventral region, far from the neural plate, do not express N-CAM, indicating that neuralization is not occurring as a result of the transplantation procedure itself. Because this response might be occurring as a result of interactions of ectoderm with either adjacent neural plate tissue, or with underlying dorsolateral mesoderm, recombinant experiments were performed to determine the source of the neuralizing signal. Ectoderm cultured in combination with neural plate tissue alone expresses neural markers, while ectoderm cultured in combination with dorsolateral mesoderm does not. We conclude that neural tissue can homeogenetically induce competent ectoderm to form neural tissue and argue that this induction occurs via planar signaling within the ectoderm, a mechanism that, in normal development, may be involved in interactions within presumptive neural ectoderm or in specifying structures that lie near the neural plate.  相似文献   

10.
Vertical versus planar induction in amphibian early development   总被引:3,自引:1,他引:2  
In the Urodeles, the archenteron roof invaginates as a single continuous sheet of cells, vertically inducing the neural anlage in the overlying ectoderm during invagination. The induction comprises first the activation process, leading, to forebrain differentiation tendencies, and then the superimposed transformation process, which changes presumptive forebrain development into that of hindbrain and spinal cord acting with a caudally increasing intensity. The activating action, being maximal anteriorly, decreases caudally to nearly zero. In the double-layered Xenopus embryo, the internal mesodermal marginal zone shows much more independent and earlier regional segregation and involution than the external marginal zone in the Urodeles; its prechordal mesoderm already initiating vertical neural induction in overlying ectoderm at stages 10 to 10+ before any visible archenteron invagination. In Xenopus incomplete exogastrulae the prechordal mesoderm involutes normally prior to evagination of the endoderm and mesodem. Artificially produced Xenopus total exogastrulae, made at stage 9 before mesoderm involution, behave just like axolotl total exogastrulae, showing no neural differentiation. The notion of planar neural induction in Xenopus can only be applied in exogastrulae and Keller explants for the transforming action, which is maximal in the caudal archenteron roof. In normal Xenopus development, the formation of the entire nervous system is essentially due to vertical induction by the successively involuting prechordal and notochordal mesoderm. The different behavior of Xenopus embryos in comparison with Urodele embryos can essentially be explained by the double-layered character of the animal moiety of the Xenopus embryo.  相似文献   

11.
12.
Mesoderm formation in the presumptive trunk organizer was analyzed in gastrulae of Cynops pyrrhogaster. The presumptive trunk organizer showed little or no mesodermal differentiation in the beginning gastrula (0 h embryo). But as soon as the presumptive trunk organizer came into contact with the newly invaginated cranial archenteron roof, it rapidly formed mesoderm. This suggests that this differentiation was brought about by an inductive effect of the underlying cranial archenteron roof. For investigation of this possibility, the presumptive trunk organizer of 0 h embryos (Tr-0) and the newly invaginated cranial archenteron roof (presumptive pharyngeal endoderm and prechordal plate) of successive stages were cultured in isolation and by the sandwich technique. The newly invaginated presumptive pharyngeal endoderm and prechordal plate had no effect on mesoderm formation of the presumptive trunk organizer, and mesodermal differentiation of the combinations was similar to that of the Tr-0 alone. On the other hand, results showed that the prechordal plate, which came into contact with the still uninvaginated presumptive trunk organizer, stimulated dorsalisation of the weakly mesodermized trunk organizer. Based on these results, the stepwise process of mesoderm formation in the trunk organizer is discussed.  相似文献   

13.
When presumptive ectoderm is treated with high concentrations of activin A, it mainly differentiates into axial mesoderm (notochord, muscle) in Xenopus and into yolk-rich endodermal cells in newt (Cynops pyrrhogaster). Xenopus ectoderm consists of multiple layers, different from the single layer of Cynops ectoderm. This multilayer structure of Xenopus ectoderm may prevent complete treatment of activin A and subsequent whole differentiation into endoderm. In the present study, therefore, Xenopus ectoderm was separated into an outer layer and an inner layer, which were individually treated with a high concentration of activin A (100 ng/mL). Then the differentiation and inductive activity of these ectodermal cells were examined in explantation and transplantation experiments. In isolation culture, ectoderm treated with activin A formed endoderm. Ectodermal and mesodermal tissues were seldom found in these explants. The activin-treated ectoderm induced axial mesoderm and neural tissues, and differentiated into endoderm when it was sandwiched between two sheets of ectoderm or was transplanted into the ventral marginal zone of other blastulae. These findings suggest that Xenopus ectoderm treated with a high concentration of activin A forms endoderm and mimics the properties of the organizer as in Cynops.  相似文献   

14.
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.  相似文献   

15.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

16.
17.
The development of phenoloxidase during amphioxus embryogenesis was spectrophotometrically and histochemically studied for the first time in the present study. It was found that (1) PO activity initially appeared in the general ectoderm including the neural ectoderm and the epidermal ectoderm at the early neurula stage but not in the mesoderm or the endoderm, and (2) PO activity disappeared in the neural plate cells but remained unchanged in the epidermal cells when the neural plate was morphologically quite distinct from the rest of the ectoderm. It is apparent that PO could serve as a marker enzyme for differentiation of the neural ectoderm from the epidermal ectoderm during embryonic development of amphioxus.  相似文献   

18.
19.
The experiments described in this paper were designed to compare the normal fates of animal pole blastomeres of Xenopus laevis with their state of commitment. Single animal pole blastomeres were labeled with a lineage marker and transplanted into the blastocoels of host embryos of different stages. The distribution of labeled daughter cells in the tadpole reflects the state of commitment of the parent cell at the time of transplantation. It is known that cells from the animal pole of the early blastula normally contribute predominantly to ectoderm with a small, but significant, contribution to the mesoderm. We show that on transplantation to the blastocoels of late blastula host embryos these blastomeres are pluripotent, contributing to all three germ layers. At later stages the normal fate of these cells becomes restricted solely to ectoderm and concomitantly the proportion of pluripotent cells is reduced, although the results depend upon the stage of the host embryo. Blastomeres from late blastula donors transplanted to mid gastrulae contribute solely to ectoderm in 34% of cases; however, in earlier hosts, when the vegetal hemisphere cells have "mesoderm inducing" or "vegetalizing" activity, late blastula animal pole blastomeres contribute to mesoderm and endoderm rather than ectoderm. Thus during the blastula stage animal pole cells pass from pluripotency to a labile state of commitment to ectoderm.  相似文献   

20.
Rana pipiens embryos at the end of the blastula stage were dissociated and the cell suspension was separated into presumptive ectoderm, mesoderm, light endoderm, and heavy endoderm cells by a discontinuous density gradient centrifugation technique. The isolated germ layers were analyzed for total lipid, lipid phosphorus, plasmalogen, RNA, and DNA. Per gram dry weight, DNA showed a threefold decrease from ectoderm to heavy endoderm. On the same basis, the RNA content of the mesoderm was 34 per cent higher than that of ectoderm, and 320 and 570 per cent higher than that of light and heavy endoderm, respectively. In addition to the RNA and DNA gradients, there were at least two superimposed lipid gradients: a neutral lipid gradient decreasing from ectoderm to endoderm, and a total phospholipid gradient increasing from ectoderm to endoderm. In contrast to total phospholipid, a specific phospholipid class, ethanolamine plasmalogen, decreased from ectoderm to endoderm. The total lipid content per gram dry weight was the same in all the germ layers. Total phospholipids were analyzed quantitatively by thin layer chromatography. Phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and inositol phospholipid constituted 34, 13, 12, and 34 per cent, respectively, of the total lipid phosphorus. The phospholipid composition was different in each germ layer. The possible role of specific lipids in embryonic induction and differentiation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号