首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide and nisin act synergistically on Listeria monocytogenes   总被引:1,自引:0,他引:1  
This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree in the Nis(r) cells. Wild-type cells grown in 100% CO(2) were two to five times longer than cells grown in air. Nisin (2.5 microg/ml) did not decrease the viability of Nis(r) cells but for wild-type cells caused an immediate 2-log reduction of viability when they were grown in air and a 4-log reduction when they were grown in 100% CO(2). There was a quantifiable synergistic action between nisin and CO(2) in the wild-type strain. The MIC of nisin for the wild-type strain grown in the presence of 2.5 microg of nisin per ml increased from 3.1 to 12.5 microg/ml over 35 days, but this increase was markedly delayed for cultures in CO(2). This synergism between nisin and CO(2) was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO(2) and nisin occurs at the cytoplasmic membrane. Liposomes made from cells grown in a CO(2) atmosphere were even more sensitive to nisin action. Liposomes made from cells grown at 4 degrees C were dramatically more nisin sensitive than were liposomes derived from cells grown at 30 degrees C. Cells grown in the presence of 100% CO(2) and those grown at 4 degrees C had a greater proportion of short-chain fatty acids. The synergistic action of nisin and CO(2) is consistent with a model where membrane fluidity plays a role in the efficiency of nisin action.  相似文献   

2.
The influence of the physical state of the membrane on the swimming behaviour of Tetrahymena pyriformis was studied in cells with lipid-modified membranes. When the growth temperature of Tetrahymena cells was increased from 15 degrees C to 34 degrees C or decreased from 39 degrees C to 15 degrees C, their swimming velocity changed gradually in a similar to the adaptive change in membrane lipid composition. Therefore, such adaptive changes in swimming velocity were not observed during short exposures to a different environment. Tetrahymena cells adapted to 34 degrees C swam at 570 microns/s. On incubation at 15 degrees C these cells swam at 100 microns/s. When the temperature was increased to 34 degrees C after a 90-min incubation at 15 degrees C, the initial velocity was immediately recovered. On replacement of tetrahymanol with ergosterol, the swimming velocity of 34 degrees C-grown cells decreased to 210 microns/s, and the cells ceased to move when the temperature was decreased to 15 degrees C. To investigate the influence of the physical state of the membrane on the swimming velocity, total phospholipids were prepared from Tetrahymena cells grown under these different conditions. The fluidities of liposomes of these phospholipid were measured using stearate spin probe. The membrane fluidity of the cells cooled to 15 degrees C increased gradually during incubation at 15 degrees C. On the other hand, the fluidity of the heated cell decreased during incubation at 34 degrees C. Replacement of tetrahymanol with ergosterol decreased the membrane fluidity markedly. Consequently, a good correlation was observed between swimming velocity and membrane fluidity; as the membrane fluidity increased, the swimming velocity increased linearly up to 600 microns/s. These results provide evidence for the regulation of the swimming behaviour by physical properties of the membrane.  相似文献   

3.
The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.  相似文献   

4.
Listeria monocytogenes is a foodborne psychrotrophic pathogen that grows at refrigeration temperatures. Previous studies of fatty acid profiles of wild-type and cold-sensitive, branched-chain fatty acid deficient mutants of L. monocytogenes suggest that the fatty acid 12-methyltetradecanoic (anteiso-C(15:0)) plays a critical role in low-temperature growth of L. monocytogenes, presumably by maintaining membrane fluidity. The fluidity of isolated cytoplasmic membranes of wild-type (SLCC53 and 10403S), and a cold-sensitive mutant (cld-1) of L. monocytogenes, grown with and without the supplementation of 2-methylbutyric acid, has been studied using a panel of hydrocarbon-based nitroxides (2N10, 3N10, 4N10, and 5N10) and spectral deconvolution and simulation methods to obtain directly the Lorentzian line widths and hence rotational correlation times (tau(c)) and motional anisotropies of the nitroxides in the fast motional region. tau(c) values over the temperature range of -7 degrees C to 50 degrees C were similar for the membranes of strains SLCC53 and 10403S grown at 10 degrees C and 30 degrees C, and for strain cld-1 grown with 2-methylbutyric acid supplementation (which restores branched-chain fatty acids) at 30 degrees C. However, strain cld-1 exhibited a threefold higher tau(c) when grown without 2-methylbutyric acid supplementation (deficient in branched-chain fatty acids) compared to strains SLCC53, 10403S, and supplemented cld-1. No evidence was seen for a clear lipid phase transition in any sample. We conclude that the fatty acid anteiso-C(15:0) imparts an essential fluidity to the L. monocytogenes membrane that permits growth at refrigeration temperatures.  相似文献   

5.
Listeria monocytogenes is a food-borne pathogen that has been implicated in many outbreaks associated with ready-to-eat products. Listeria adjusts to various stresses by adjusting its membrane fluidity, increasing the uptake of osmoprotectants and cryoprotectants, and activating the sigma(B) stress factor. The present work examines the regulation of membrane fluidity through direct measurement based on fluorescent anisotropy. The membrane fluidities of L. monocytogenes Scott A, NR30, wt10403S, and cld1 cells cultured at 15 and 30 degrees C were measured at 15 and 30 degrees C. The membrane of the cold-sensitive mutant (cld1) was more rigid than the membranes of the other strains when grown at 30 degrees C, but when grown at 15 degrees C, it was able to adjust its membrane to approach the rigidity of the other strains. The difference in rigidities, as determined at 15 and 30 degrees C, was greater in liposomes than in whole cells. The rates of fluidity adjustment and times required for whole cells to adjust to a different temperature were similar among strains but different from those of liposomes. This suggests that the cells had a mechanism for homeoviscous adaptation that was absent in liposomes.  相似文献   

6.
Mammalian cell metabolism is responding to changes in temperature. Body temperature is regulated around 37 degrees C, but temperatures of exposed skin areas may vary between 20 degrees C and 40 degrees C for extended periods of time without apparent disturbance of adequate cellular functions. Cellular membrane functions are depending from temperatures but also from their lipid environment, which is a major component of membrane fluidity. Temperature-induced changes of membrane fluidity may be counterbalanced by adaptive modification of membrane lipids. Temperature-dependent changes of whole cell- and of purified membrane lipids and possible homeoviscous adaptation of membrane fluidity have been studied in human skin fibroblasts cultured at 30 degrees C, 37 degrees C, and 40 degrees C for ten days. Membrane anisotropy was measured by polarized fluorescence spectroscopy using TMA-DPH for superficial and DPH for deeper membrane layers. Human fibroblasts were able to adapt themselves to hypothermic temperatures (30 degrees C) by modifying the fluidity of the deeper apolar regions of the plasma membranes as reported by changes of fluorescence anisotropy due to appropriate changes of their plasma membrane lipid composition. This could not be shown for the whole cells. At 40 degrees C growth temperature, adaptive changes of the membrane lipid composition, except for some changes in fatty acid compositions, were not seen. Independent from the changes of the membrane lipid composition, the fluorescence anisotropy of the more superficial membrane layers (TMA-DPH) increased in cells growing at 30 degrees C and decreased in cells growing at 40 degrees C.  相似文献   

7.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (k(D) 2.68 x 10(-7) M vs. 1.03 x 10(-6) M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

8.
Cultured chick fibroblasts supplemented with stearic acid in the absence of serum at 37 degrees C degenerate and die in contrast to cells grown at 41 degrees C which appear normal in comparison with controls. These degenerative effects at 37 degrees C are alleviated by addition to stearate-containing media of fatty acids known to fluidize bilayers. These observations suggest that cell degeneration at 37 degrees C may involve alterations in the physical state of the membrane. Fatty acid analysis of plasma membrane obtained from stearate-supplemented cells clearly demonstrates the enrichment of this fatty acid species into bilayer phospholipids. Moreover, the extent of enrichment is similar in cells grown at both 37 and 41 degrees C. Stearate enrichment at either temperature does not appear to alter significantly membrane cholesterol or polar lipid content. Fluorescence anisotropy measurements for perylene and diphenylhexatriene incorporated into stearate-enriched membranes reveals changes suggestive of decreased bilayer fluidity. Moreover, analysis of temperature dependence of probe anisotropy indicates that a similarity in bilayer fluidity exists between stearate-enriched membranes at 41 degrees C and control membranes at 37 degrees C. Calorimetric data from liposomes prepared from polar lipids isolated from these membranes show similar melting profiles, consistent with the above lipid and fluorescence analyses. Arrhenius plot of stearate-enriched membrane glucose transporter function reveals breaks which coincide with the main endotherm of the pure phospholipid phase transition, indicating the sensitivity of the transporter to this transition which is undetectable in these native bilayers. These data suggest the existence of regions of bilayer lipid microheterogeneity which affect integral enzyme function, cell homeostasis and viability.  相似文献   

9.
Freeze-fracturing of cholesterol-rich Mycoplasma gallisepticum membranes from cells grown in a medium containing horse serum revealed particle-free patches. The patches appeared in cells quenched from either 4 or 37 degrees C. Particle-free patches also occurred in membranes of cells grown in a serum-free medium supplemented with egg-phosphatidylcholine but not in membranes of cells grown with dioleoylphosphatidylcholine. The appearance of particle-free patches was attributed to the presence of disaturated phosphatidylcholine (PC) molecules in M. gallisepticum membranes, which were synthesized by the insertion of a saturated fatty acid at position 2 of lysophosphatidylcholine derived from exogenous PC present in the growth medium. Consequences of the synthesis of the disaturated PC also included a decrease in osmotic fragility and the ability of the cells to be permeated by K+. Electron paramagnetic resonance and fluorescence polarization measurements revealed that the fluidity of the lipid domain in the protein-rich M. gallisepticum membranes was almost identical to that of an aqueous dispersion of M. gallisepticum membrane lipids. Furthermore, the electron paramagnetic resonance spectra of the membranes were single-component spectra showing no indication of immobilized regions. The possibility that the osmotic resistance of M. gallisepticum cells is associated with the particle-free patches rather than with a restricted membrane fluidity caused by membrane proteins is discussed.  相似文献   

10.
Fluidity and composition of cell membranes during progression of Mycoplasma canadense cultures grown in a serum-free medium was assessed. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at 25 degrees C of intact cells and liposomes in the exponential and stationary phases of growth was compared. A decrease in fluidity and an increase in the ratio of saturated to unsaturated fatty acids was detected in cell membranes on aging. Nevertheless, membrane density remained unaltered although the molar ratio of cholesterol to phospholipids decreased. It is proposed that the increase in lipid order is primarily due to the increase in the ratio of saturated to unsaturated membrane fatty acids, being the diminished molar ratio of cholesterol to phospholipids involved in the reduced unsaturated fatty acid uptake.  相似文献   

11.
When Streptococcus salivarius was grown in batch culture in the presence of various Tween detergents, the fatty acid moiety of the detergent was incorporated into the lipids of its membrane. Tween 80 (containing primarily oleic acid) markedly stimulated the production of extracellular glucosyltransferase and also increased the degree of unsaturation of the membrane lipid fatty acids. The possibility that an increase in membrane unsaturated fatty acids promoted extracellular glucosyltransferase production was examined by growing cells at different temperatures in the presence or absence of Tween 80. The membrane lipids of cells grown at 30 degrees C, 37 degrees C and 40 degrees C without Tween 80 exhibited unsaturated/saturated fatty acid ratios of 2.06, 1.01 and 0.87 respectively. A significant increase in the production of extracellular glucosyltransferase was observed at 30 degrees C compared to cells grown at 40 degrees C. However, cells produced much more exoenzyme at all temperatures when grown with Tween 80. The results indicated that an increase in the unsaturated fatty acid content of the membrane lipids was not by itself sufficient to account for the stimulation of extracellular glucosyltransferase production by Tween 80, but that the surfactant also had to be present.  相似文献   

12.
The fatty acid composition of the lipid A moiety of the lipopolysaccharide and phospholipid fractions of Proteus mirabilis changed significantly on varying the growth temperature. A decrease in the growth temperature from 43 degrees C to 15 degrees C resulted in a decrease in the palmitic acid content of the lipopolysaccharide from 19.4% of total fatty acids at 43 degrees C to 1.4% at 15 degrees C, and by the appearance of an unsaturated fatty acid residue, hexadecenoic acid. Changes in the 3-hydroxy-myristic acid content of the lipid A were minimal. The decrease in the growth temperature also resulted in a decrease in the saturated fatty acid content of the phospholipid fraction, which was accompanied by an increase in their fluidity, as measured by the freedom of motion of spin-labeled fatty acids incorporated into dispersions made of the phospholipids. Nevertheless, the fluidity obtained with membrane phospholipids extracted from the cells grown at various temperatures were essentially the same when fluidity was determined at the growth temperature, supporting the hypothesis that variations in the fatty acid composition of membrane phospholipids serve to produce membranes having a constant fluidity at different temperatures of growth.  相似文献   

13.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

14.
A specific effect of cardiolipin on fluidity of mitochondrial membranes was demonstrated in Tetrahymena cells acclimated to a lower temperature in the previous report (Yamauchi, T., Ohki, K., Maruyama, H. and Nozawa, Y. (1981) Biochim. Biophys. Acta 649, 385-392). This study was further confirmed by the experiment using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Anisotropy of DPH for microsomal and pellicular total lipids from Tetrahymena cells showed that membrane fluidity of these lipids increased gradually as the cells were incubated at 15 degrees C after the shift down of growth temperature from 39 degrees C. However, membrane fluidity of mitochondrial total lipids was kept constant up to 10 h. This finding is compatible with the result obtained using spin probe in the previous report. Additionally, the break-point temperature of DPH anisotropy was not changed in mitochondrial lipids whereas those temperatures in pellicular and microsomal lipids lowered during the incubation at 15 degrees C. Interaction between cardiolipins and various phospholipids, which were isolated from Tetrahymena cells grown at 39 degrees C or 15 degrees C and synthesized chemically, was investigated extensively using a spin labeling technique. The addition of cardiolipins from Tetrahymena cells grown at either 39 degrees C or 15 degrees C did not change the membrane fluidity (measured at 15 degrees C) of phosphatidylcholine from whole cells grown at 39 degrees C. On the other hand, both cardiolipins of 39 degrees C-grown and 15 degrees C-grown cells decreased the membrane fluidity of phosphatidylcholine from Tetrahymena cells grown at 15 degrees C. The same results were obtained for phosphatidylcholines of mitochondria and microsomes. Membrane fluidity of phosphatidylethanolamine, isolated from cells grown at 15 degrees C, was reduced to a small extent by Tetrahymena cardiolipin whereas that of 39 degrees C-grown cells was not changed. Representative molecular species of phosphatidylcholines of cells grown at 39 degrees C and 15 degrees C were synthesized chemically; 1-palmitoyl-2-oleoylphosphatidylcholine for 39 degrees C-grown cells and dipalmitoleoylphosphatidylcholine for 15 degrees C-grown ones. By the addition of Tetrahymena cardiolipin, the membrane fluidity of 1-palmitoyl-2-oleoylphosphatidylcholine was not changed but that of dipalmitoleoylphosphatidylcholine was decreased markedly. These phenomena were caused by Tetrahymena cardiolipin. However, bovine heart cardiolipin, which has a different composition of fatty acyl chains from the Tetrahymena one, exerted only a small effect.  相似文献   

15.
Nisin, a bacteriocin produced by some strains of Lactococcus lactis, acts against foodborne pathogen Listeria monocytogenes. A single exposure of cells to nisin can generate nisin-resistant (Nisr) mutants, which may compromise the use of nisin in the food industry. The objective of this research was to compare the heat resistance of Nisr and wild type (WT) Listeria monocytogenes. The synergistic effect of heat-treatment (55 degrees C) and nisin (500 IU ml-1) on the Nisr cells and the WT L. monocytogenes Scott A was also studied. When the cells were grown in the absence of nisin, there was no significant (alpha = 0.05) difference in heat resistance between WT and Nisr cells of L. monocytogenes at 55, 60 and 65 degrees C. However, when the Nisr cells were grown in the presence of nisin, they were more sensitive to heat at 55 degrees C than the WT cells. The D-values at 55 degrees C were 2.88 and 2.77 min for Nisr ATCC 700301 and ATCC 700302, respectively, which was significantly (alpha = 0.05) lower than the D-value for WT, 3.72 min. When Nisr cells were subjected to a combined treatment of heat and nisin, there was approximately a four log reduction during the first 7 min of treatment.  相似文献   

16.
Adaptation of the food-borne pathogen Bacillus cereus to carvacrol   总被引:1,自引:0,他引:1  
Carvacrol, a natural antimicrobial compound present in the essential oil fraction of oregano and thyme, is bactericidal towards Bacillus cereus. A decrease of the sensitivity of B. cereus towards carvacrol was observed after growth in the presence of non-lethal carvacrol concentrations. A decrease of the melting temperature (Tm) of membranes from 20.5 degrees C to 12.6 degrees C was the immediate effect of the addition of carvacrol. Cells adapted to 0.4 mM carvacrol showed a lower membrane fluidity than nonadapted cells. Adaptation of 0.4 mM carvacrol increased the Tm from 20.5 degrees C to 28.3 degrees C. The addition of carvacrol to cell suspensions of adapted B. cereus cells decreased Tm again to 19.5 degrees C, approximately the same value as for the non-adapted cells in the absence of carvacrol. During adaptation, changes in the fatty acid composition were observed. The relative amount of iso-C13:0, C14:0, and iso-C15:0 increased and cis-C16:1 and C18:0 decreased. The head-group composition also changed, two additional phospholipids were formed and one phospholipid was lacking in the adapted cells. It could be concluded that B. cereus adapts to carvacrol when present at non-lethal concentrations in the growth medium by lowering its membrane fluidity by changing the fatty acid and headgroup composition.  相似文献   

17.
Purdy PH  Fox MH  Graham JK 《Cryobiology》2005,51(1):102-112
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.  相似文献   

18.
Measurements of fluorescence polarization in intact diploid skin fibroblasts after exposure to 1,6-diphenyl-1,3,5-hexatriene were used to estimate the fluidity of the lipid phase(s) of cellular membranes. The membrane lipids of cells derived from four patients with homozygous familial hypercholesterolemia were in a more fluid state than those of cells obtained from 13 other individuals of normal and nonrelated mutant genotypes when all cultures were grown on medium with native serum. The only other cell type having membrane lipids of increased fluidity under these conditions was one fibroblast line derived from a patient with the Lesch-Nyhan syndrome. Examination of two additional nonconsanguinous lines of Lesch-Nyhan fibroblasts, however, revealed that an abnormally high level of lipid fluidity was not a common property of the membranes of cells of this genotype. Incubation of cultures in medium containing lipid-depleted serum (virtually devoid of lipoprotein-bound sterol) caused a reversible increase in the fluidity of the membranes of normal cells to values similar to those of the hypercholesterolemic cells, but had no effect on the membranelipid fluidity of the latter. By contrast, exposure of cultures to cholesterol not bound to lipoprotein in serum-free medium resulted in a decrease in the lipid fluidity of the membranes of both normo- and hypercholesterolemic fibroblasts.  相似文献   

19.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (kD 2.68 × 10− 7 M vs. 1.03 × 10− 6 M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

20.
Yeast cells grown anaerobically have been shown to vary in their ultrastructure and absorption spectrum depending upon the composition of the growth medium. The changes observed in the anaerobically grown cells are governed by the availability of unsaturated fatty acids and ergosterol and a catabolite or glucose repression. All the cells contain nuclear and plasma membranes, but the extent of the occurrence of vacuolar and mitochondrial membranes varies greatly with the growth conditions. Cells grown anaerobically on the least nutritive medium, composed of 0.5% Difco yeast extract-5% glucose-inorganic salts (YE-G), appear to contain little vacuolar membrane and no clearly recognizable mitochondrial profiles. Cells grown anaerobically on the YE-G medium supplemented with Tween 80 and ergosterol contain clearly recognizable vacuolar membrane and some mitochondrial profiles, albeit rather poorly defined. Cells grown on YE-G medium supplemented only with Tween 80 are characterized by the presence of large amounts of cytoplasmic membrane in addition to vacuolar membrane and perhaps some primitive mitochondrial profiles. When galactose replaces glucose as the major carbon source in the medium, the mitochondrial profiles within the cytoplasm become more clearly recognizable and their number increases. In aerobically grown cells, the catabolite repression also operates to reduce the total number of mitochondrial profiles. The possibility is discussed that cells grown anaerobically on the YE-G medium may not contain mitochondrial membrane and, therefore, that such cells, on aeration, form mitochondrial membrane from nonmitochondrial sources. A wide variety of absorption compounds is observed in anaerobically grown cells which do not correspond to any of the classical aerobic yeast cytochromes. The number and relative proportions of these anaerobic compounds depend upon the composition of the growth medium, the most complex spectrum being found in cells grown in the absence of lipid supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号