首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of phosphorus (P) status on arsenate reductase gene (OsACR2.1) expression, arsenate reductase activity, hydrogen peroxide (H2O2) content, and arsenic (As) species in rice seedlings which were exposed to arsenate after ?P or +P pretreatments were investigated in a series of hydroponic experiments. OsACR2.1 expression increased significantly with decreasing internal P concentrations; more than 2-fold and 10-fold increases were found after P starvation for 30 h and 14 days, respectively. OsACR2.1 expression exhibited a significant positive correlation with internal root H2O2 accumulation, which increased upon P starvation or exposure to H2O2 without P starvation. Characterization of internal and effluxed As species showed the predominant form of As was arsenate in P-starved rice root, which contrasted with the +P pretreated plants. Additionally, more As was effluxed from P-starved rice roots than from non-starved roots. In summary, an interesting relationship was observed between P-starvation induced H2O2 and OsACR2.1 gene expression. However, the up-regulation of OsACR2.1 did not increase arsenate reduction in P-starved rice seedlings when exposed to arsenate.  相似文献   

2.
Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.  相似文献   

3.
In Saccharomyces cerevisiae, expression of the ACR2 and ACR3 genes confers arsenical resistance. Acr2p is the first identified eukaryotic arsenate reductase. It reduces arsenate to arsenite, which is then extruded from cells by Acr3p. In this study, we demonstrate that ACR2 complemented the arsenate-sensitive phenotype of an arsC deletion in Escherichia coli. ACR2 was cloned into a bacterial expression vector and expressed in E. coli as a C-terminally histidine-tagged protein that was purified by sequential metal chelate affinity and gel filtration chromatography. Acr2p purified as a homodimer of 34 kDa. The purified protein was shown to catalyze the reduction of arsenate to arsenite. Enzymatic activity as a function of arsenate concentration exhibited an apparent positive cooperativity with an apparent Hill coefficient of 2.7. Activity required GSH and glutaredoxin as the source of reducing equivalents. Thioredoxin was unable to support arsenate reduction. However, glutaredoxins from both S. cerevisiae and E. coli were able to serve as reductants. Analysis of grx mutants lacking one or both cysteine residues in the Cys-Pro-Tyr-Cys active site demonstrated that only the N-terminal cysteine residue is essential for arsenate reductase activity. This suggests that during the catalytic cycle, Acr2p forms a mixed disulfide with GSH before being reduced by glutaredoxin to regenerate the active Acr2p reductase.  相似文献   

4.
Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the shoots of Arabidopsis thaliana. However, no information of the in vivo As speciation has been reported. Here, we investigated the effect of AtACR2 knockout or overexpression on As speciation, arsenite efflux from roots and As accumulation in shoots. T-DNA insertion lines, overexpression lines and wild-type (WT) plants were exposed to different concentrations of arsenate for different periods, and As speciation in plants and arsenite efflux were determined using HPLC-ICP-MS. There were no significant differences in As speciation between different lines, with arsenite accounting for >90% of the total extractable As in both roots and shoots. Arsenite efflux to the external medium represented on average 77% of the arsenate taken up during 6 h exposure, but there were no significant differences between WT and mutants or overexpression lines. Accumulation of As in the shoots was also unaffected by AtACR2 knockout or overexpression. Additionally, after exposure to arsenate, the yeast (Saccharomyces cerevisiae) strain with ScACR2 deleted showed similar As speciation as the WT with arsenite-thiol complexes being the predominant species. Our results suggest the existence of multiple pathways of arsenate reduction in plants and yeast.  相似文献   

5.
6.
Acr2p detoxifies arsenate by reduction to arsenite in Saccharomyces cerevisiae. This reductase has been shown to require glutathione and glutaredoxin, suggesting that thiol chemistry might be involved in the reaction mechanism. Acr2p has a HC(X)(5)R motif, the signature sequence of the phosphate binding loop of the dual-specific and protein-tyrosine phosphatase family. In Acr2p these are residues His-75, Cys-76, and Arg-82, respectively. Acr2p has another sequence, (118)HCR, that is absent in phosphatases. Acr2p also has a third cysteine residue at position 106. Each of these cysteine residues was changed individually to serine residues, whereas the histidine and arginine residues were altered to alanines. Cells of Escherichia coli heterologously expressing the majority of the mutant ACR2 genes retained wild type resistance to arsenate, and the purified altered Acr2p proteins exhibited normal enzymatic properties. In contrast, cells expressing either the C76S or R82A mutations lost resistance to arsenate, and the purified proteins were inactive. These results suggest that Acr2p utilizes a phosphatase-like Cys(X)(5)Arg motif as the catalytic center to reduce arsenate to arsenite.  相似文献   

7.
8.
Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase   总被引:4,自引:0,他引:4  
The ACR2 gene of Saccharomyces cerevisiae was disrupted by insertion of a HIS3 gene. Cells with the disruption were sensitive to arsenate. This phenotype could be complemented by ACR2 on a plasmid. The ACR2 gene was cloned and expressed in Escherichia coli as a malE gene fusion with a C-terminal histidine tag. The combination of chimeric MBP-Acr2-6H protein and yeast cytosol from an ACR2-disrupted strain exhibited arsenate reductase activity.  相似文献   

9.
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.  相似文献   

10.
To elucidate the mechanisms of arsenic resistance in the arsenic hyperaccumulator fern Pteris vittata L., a cDNA for a glutaredoxin (Grx) Pv5-6 was isolated from a frond expression cDNA library based on the ability of the cDNA to increase arsenic resistance in Escherichia coli. The deduced amino acid sequence of Pv5-6 showed high homology with an Arabidopsis chloroplastic Grx and contained two CXXS putative catalytic motifs. Purified recombinant Pv5-6 exhibited glutaredoxin activity that was increased 1.6-fold by 10 mm arsenate. Site-specific mutation of Cys(67) to Ala(67) resulted in the loss of both GRX activity and arsenic resistance. PvGrx5 was expressed in E. coli mutants in which the arsenic resistance genes of the ars operon were deleted (strain AW3110), a deletion of the gene for the ArsC arsenate reductase (strain WC3110), and a strain in which the ars operon was deleted and the gene for the GlpF aquaglyceroporin was disrupted (strain OSBR1). Expression of PvGrx5 increased arsenic tolerance in strains AW3110 and WC3110, but not in OSBR1, suggesting that PvGrx5 had a role in cellular arsenic resistance independent of the ars operon genes but dependent on GlpF. AW3110 cells expressing PvGrx5 had significantly lower levels of arsenite when compared with vector controls when cultured in medium containing 2.5 mm arsenate. Our results are consistent with PvGrx5 having a role in regulating intracellular arsenite levels, by either directly or indirectly modulating the aquaglyceroporin. To our knowledge, PvGrx5 is the first plant Grx implicated in arsenic metabolism.  相似文献   

11.
12.
13.
Pteris vittata sporophytes hyperaccumulate arsenic to 1% to 2% of their dry weight. Like the sporophyte, the gametophyte was found to reduce arsenate [As(V)] to arsenite [As(III)] and store arsenic as free As(III). Here, we report the isolation of an arsenate reductase gene (PvACR2) from gametophytes that can suppress the arsenate sensitivity and arsenic hyperaccumulation phenotypes of yeast (Saccharomyces cerevisiae) lacking the arsenate reductase gene ScACR2. Recombinant PvACR2 protein has in vitro arsenate reductase activity similar to ScACR2. While PvACR2 and ScACR2 have sequence similarities to the CDC25 protein tyrosine phosphatases, they lack phosphatase activity. In contrast, Arath;CDC25, an Arabidopsis (Arabidopsis thaliana) homolog of PvACR2 was found to have both arsenate reductase and phosphatase activities. To our knowledge, PvACR2 is the first reported plant arsenate reductase that lacks phosphatase activity. CDC25 protein tyrosine phosphatases and arsenate reductases have a conserved HCX5R motif that defines the active site. PvACR2 is unique in that the arginine of this motif, previously shown to be essential for phosphatase and reductase activity, is replaced with a serine. Steady-state levels of PvACR2 expression in gametophytes were found to be similar in the absence and presence of arsenate, while total arsenate reductase activity in P. vittata gametophytes was found to be constitutive and unaffected by arsenate, consistent with other known metal hyperaccumulation mechanisms in plants. The unusual active site of PvACR2 and the arsenate reductase activities of cell-free extracts correlate with the ability of P. vittata to hyperaccumulate arsenite, suggesting that PvACR2 may play an important role in this process.  相似文献   

14.
Rapid reduction of arsenate in the medium mediated by plant roots   总被引:9,自引:1,他引:8  
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 microm arsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.  相似文献   

15.
The influence of sulphur on the accumulation and metabolism of arsenic in rice was investigated. Rice seedlings were grown in nutrient solutions with low sulphate (1.8 μM SO42−) or high sulphate (0.7 mM SO42−) for 12 or 14 d, before being exposed to 10 μM arsenite or arsenate for 2 or 1 d, respectively. In the arsenite exposure treatment, low sulphate-pretreated rice accumulated less arsenite than high sulphate pretreated plants, but the arsenite concentrations in shoots of low sulphate pretreated rice were higher than those of high sulphate pretreated. In the arsenate exposure treatment, the low sulphate pre-treatments also resulted in less arsenite accumulation in rice roots. Sulphur deprivation in nutrient solution decreased the concentrations of non-protein thiols in rice roots exposed to either arsenite or arsenate. The low sulphate-pretreated plants had a higher arsenic transfer factor than the high sulphate-pretreated plants. The results suggest that rice sulphate nutrition plays an important role in regulating arsenic translocation from roots to shoots, possibly through the complexation of arsenite-phytochelatins.  相似文献   

16.
17.
18.
19.
The ars gene system provides arsenic resistance to a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. Therefore, arsC gene from Bacillus cereus strain AG27 isolated from soil was amplified, cloned and sequenced. The strain exhibited a minimum inhibitory concentration of 40 and 35 mM to sodium arsenate and sodium arsenite, respectively. Homology of the sequence, when compared with available database using BLASTn search showed that 300 bp amplicons obtained possess partial arsC gene sequence which codes for arsenate reductase, an enzyme involved in the reduction of arsenate to arsenite which is then effluxed out of the cell, thereby indicating the presence of efflux mechanism of resistance in strain. The efflux mechanism was further confirmed by atomic absorption spectroscopy and scanning electron microscopy studies. Moreover, three dimensional structure of modeled arsC from Bacillus cereus strain shares significant structural similarity with arsenate reductase protein of B.subtilis, consisting of, highly similar overall fold with single α/β domain containing a central four stranded, parallel, open-twisted β-sheet flanked by α-helices on both sides. The structure harbors the arsenic binding motif AB loop or P-loop that is highly conserved in arsenate reductase family.  相似文献   

20.
In the arsenic resistance gene cluster from the large linear plasmid pHZ227, two novel genes, arsO (for a putative flavin-binding monooxygenase) and arsT (for a putative thioredoxin reductase), were coactivated and cotranscribed with arsR1-arsB and arsC, respectively. Deletion of the ars gene cluster on pHZ227 in Streptomyces sp. strain FR-008 resulted in sensitivity to arsenic, and heterologous expression of the ars gene cluster in the arsenic-sensitive Streptomyces strains conferred resistance on the new hosts. The pHZ227 ArsB protein showed homology to the yeast arsenite transporter Acr3p. The pHZ227 ArsC appears to be a bacterial thioredoxin-dependent ArsC-type arsenate reductase with four conserved cysteine thioredoxin-requiring motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号