首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.  相似文献   

2.
The Burkholderiales are an emerging source of bioactive natural products. Their genomes contain a large number of cryptic biosynthetic gene clusters (BGCs), indicating great potential for novel structures. However, the lack of genetic tools for the most of Burkholderiales strains restricts the mining of these cryptic BGCs. We previously discovered novel phage recombinases Redαβ7029 from Burkholderiales strain DSM 7029 that could help in efficiently editing several Burkholderiales genomes and established the recombineering genome editing system in Burkholderialse species. Herein, we report the application of this phage recombinase system in another species Paraburkholderia megapolitana DSM 23488, resulting in activation of two silent non-ribosomal peptide synthetase/polyketide synthase BGCs. A novel class of lipopeptide, haereomegapolitanin, was identified through spectroscopic characterization. Haereomegapolitanin A represents an unusual threonine-tagged lipopeptide which is longer than the predicted NRPS assembly line. This recombineering-mediated genome editing system shows great potential for genetic manipulation of more Burkholderiales species to activate silent BGCs for bioactive metabolites discovery.  相似文献   

3.
Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.  相似文献   

4.
5.
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.  相似文献   

6.
Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.  相似文献   

7.
Li  Ruixin  Li  ZiXin  Ma  Ke  Wang  Gang  Li  Wei  Liu  Hong-Wei  Yin  Wen-Bing  Zhang  Peng  Liu  Xing-Zhong 《中国科学:生命科学英文版》2019,62(8):1087-1095
Filamentous fungi are excellent sources for the production of a group of bioactive small molecules which are often called secondary metabolites(SMs). The advanced genome sequencing technology combined with bioinformatics analysis reveals a large number of unexplored biosynthetic gene clusters(BGCs) in the fungal genomes. To unlock this fungal SM treasure, many approaches including heterologous expression are being developed and efficient cloning of the BGCs is a crucial step to do this.Here, we present an efficient strategy for the direct cloning of fungal BGCs. This strategy consisted of Splicing by Overlapping Extension(SOE)-PCR and yeast assembly in vivo. By testing 14 BGCs DNA fragments ranging from 7 kb to 52 kb, the average positive rate was over 80%. The maximal insertion size for fungal BGC assembly was 52 kb. Those constructs could be used conveniently for the heterologous expression leading to the discovery of novel natural products. Thus, our results provide an efficient and quick method for the low cost direct cloning of fungal BGCs.  相似文献   

8.
The epsilon-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR operons from the two pathogenic bacteria H. pylori and C. jejuni and their expression in Wolinella succinogenes, a non-pathogenic -proteobacterium. To our knowledge, this is the first documentation of heterologous membrane protein production in W. succinogenes. We demonstrate that the replacement of the homologous enzyme from W. succinogenes with the heterologous enzymes yields mutants where fumarate respiration is fully functional. We have isolated and characterized the heterologous QFR enzymes. The high quality of the enzyme preparation enabled us to determine unequivocally by analytical ultracentrifugation the homodimeric state of the three detergent-solubilized heterotrimeric QFR enzymes, to accurately determine the different oxidation-reduction ('redox') midpoint potentials of the six prosthetic groups, the Michaelis constants for the quinol substrate, maximal enzymatic activities and the characterization of three different anti-helminths previously suggested to be inhibitors of the QFR enzymes from H. pylori and C. jejuni. This characterization allows, for the first time, a detailed comparison of the QFR enzymes from C. jejuni and H. pylori with that of W. succinogenes.  相似文献   

9.
10.
The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.  相似文献   

11.
Burkholderia have potential as biocontrol agents because they encode diverse biosynthetic gene clusters (BGCs) for a range of antimicrobial metabolites. Given the opportunistic pathogenicity associated with Burkholderia species, heterologous BGC expression within non-pathogenic hosts is a strategy to construct safe biocontrol strains. We constructed a yeast-adapted Burkholderia-Escherichia shuttle vector (pMLBAD_yeast) with a yeast replication origin 2 μ and URA3 selection marker and optimised it for cloning BGCs using the in vivo recombination ability of Saccharomyces cerevisiae. Two Burkholderia polyyne BGCs, cepacin (13 kb) and caryoynencin (11 kb), were PCR-amplified as three overlapping fragments, cloned downstream of the pBAD arabinose promoter in pMLBAD_yeast and mobilised into Burkholderia and Paraburkholderia heterologous hosts. Paraburkholderia phytofirmans carrying the heterologous polyyne constructs displayed in vitro bioactivity against a variety of fungal and bacterial plant pathogens similar to the native polyyne producers. Thirteen Paraburkholderia strains with preferential growth at 30°C compared with 37°C were also identified, and four of these were amenable to genetic manipulation and heterologous expression of the caryoynencin construct. The cloning and successful heterologous expression of Burkholderia biosynthetic gene clusters within Paraburkholderia with restricted growth at 37°C opens avenues for engineering non-pathogenic biocontrol strains.  相似文献   

12.
This study determines the natural product biosynthesis and full coding potential within the bacterial genus Aquimarina. Using comprehensive phylogenomics and functional genomics, we reveal that phylogeny instead of isolation source [host-associated (HA) vs. free-living (FL) habitats] primarily shape the inferred metabolism of Aquimarina species. These can be coherently organized into three major functional clusters, each presenting distinct natural product biosynthesis profiles suggesting that evolutionary trajectories strongly underpin their secondary metabolite repertoire and presumed bioactivities. Aquimarina spp. are highly versatile bacteria equipped to colonize HA and FL microniches, eventually displaying opportunistic behaviour, owing to their shared ability to produce multiple glycoside hydrolases from diverse families. We furthermore uncover previously underestimated, and highly complex secondary metabolism for the genus by detecting 928 biosynthetic gene clusters (BGCs) across all genomes, grouped in 439 BGC families, with polyketide synthases (PKSs), terpene synthases and non-ribosomal peptide synthetases (NRPSs) ranking as the most frequent BGCs encoding drug-like candidates. We demonstrate that the recently described cuniculene (trans-AT PKS) BGC is conserved among, and specific to, the here delineated A. megaterium-macrocephali-atlantica phylogenomic clade. Our findings provide a timely and in-depth perspective of an under-explored yet emerging keystone taxon in the cycling of organic matter and secondary metabolite production in marine ecosystems.  相似文献   

13.
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other “phytocassane” BGC. This CYP76M8 acts after the CYP99A2/3 from the “momilactone” BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the “momilactone” BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other “phytocassane” BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.

Investigation of momilactone production in rice demonstrates roles for two unlinked biosynthetic clusters, requiring interdependent evolution and highlighting the distinct nature of their assembly.  相似文献   

14.
15.
The rise of antibiotic-resistant bacteria represents a major threat to global health, creating an urgent need to discover new antibiotics. Natural products derived from the genus Streptomyces represent a rich and diverse repertoire of chemical molecules from which new antibiotics are likely to be found. However, a major challenge is that the biosynthetic gene clusters (BGCs) responsible for natural product synthesis are often poorly expressed under laboratory culturing conditions, thus preventing the isolation and screening of novel chemicals. To address this, we describe a novel approach to activate silent BGCs through rewiring endogenous regulation using synthetic gene regulators based upon CRISPR-Cas. First, we refine CRISPR interference (CRISPRi) and create CRISPR activation (CRISPRa) systems that allow for highly programmable and effective gene repression and activation in Streptomyces. We then harness these tools to activate a silent BGC by perturbing its endogenous regulatory network. Together, this work advances the synthetic regulatory toolbox for Streptomyces and facilitates the programmable activation of silent BGCs for novel chemical discovery.  相似文献   

16.
17.
In order to foster the systematic identification of novel genes with important functional roles in pancreatic cancer, we have devised a multi-stage screening strategy to provide a rational basis for the selection of highly relevant novel candidate genes based on the results of functional high-content analyses. The workflow comprised three consecutive stages: 1) serial gene expression profiling analyses of primary human pancreatic tissues as well as a number of in vivo and in vitro models of tumor-relevant characteristics in order to identify genes with conspicuous expression patterns; 2) use of ‘reverse transfection array’ technology for large-scale parallelized functional analyses of potential candidate genes in cell-based assays; and 3) selection of individual candidate genes for further in-depth examination of their cellular roles. A total of 14 genes, among them 8 from “druggable” gene families, were classified as high priority candidates for individual functional characterization. As an example to demonstrate the validity of the approach, comprehensive functional data on candidate gene ADRBK1/GRK2, which has previously not been implicated in pancreatic cancer, is presented.  相似文献   

18.
[背景] 铁是细菌生长的基本元素,而三价铁在自然水环境中几乎无法溶解。细菌已经进化出产生各种铁载体的能力,以促进铁的吸收。对于链霉菌,其特有的铁载体是去铁胺,同时它们也可以产生其他结构的铁载体,如ceolichelin、白霉素、肠杆菌素(enterobactin)和griseobactin。[目的] 揭示链霉菌中铁载体生物合成基因簇(Biosynthetic Gene Clusters,BGCs)的分布特点和基因簇特征,并探索其所合成铁载体的化合物结构。[方法] 利用生物信息学工具系统地分析308个具有全基因组序列信息的链霉菌中的铁载体生物合成基因簇,并用色谱和波谱方法分离和表征肠杆菌素相关天然产物。[结果] 发现Streptomyces albofaciens JCM 4342和其他少数菌株同时含有一个缺少2,3-二羟基苯甲酸(2,3-DHB)生物合成基因的孤立的肠杆菌素生物合成基因簇和另外一个推测可合成griseobactin的基因簇。从S.albofaciens JCM 4342发酵液中鉴定出4个肠杆菌素衍生的天然产物,包括链状2,3-二羟基苯甲酸酯-l-丝氨酸(2,3-DHBS)的三聚体和二聚体以及它们的脱水产物。[结论] 2个基因簇间存在一种特别的协同生物合成机制。推测是griseobactin基因簇负责合成2,3-DHB,而孤立的肠杆菌素基因簇编码的生物合成酶可夺取该底物,进而完成上述4种肠杆菌素衍生天然产物的生物合成。  相似文献   

19.
The cyclic amidohydrolase family enzymes, which include allantoinase, dihydroorotase, dihydropyrimidinase and (phenyl)hydantoinase, are metal-dependent hydrolases and play a crucial role in the metabolism of purine and pyrimidinein vivo. Each enzyme has been independently characterized, and thus well documented, but studies on the higher structural traits shared by members of this enzyme family are rare due to the lack of comparative study. Here, we report upon the expression inE. coli cells of maltose-binding protein (MBP)- and glutathione S-transferase (GST)-fused cyclic amidohydrolase family enzymes, facilitating also for both simple purification and high-level expression. Interestingly, the native quaternary structure of each enzyme was maintained even when fused with MBP and GST. We also found that in fusion proteins the favorable biochemical properties of family enzymes such as, their optimal pHs, specific activities and kinetic properties were conserved compared to the native enzymes. In addition, MBP-fused enzymes showed remarkable folding abilityin-vitro. Our findings, therefore, suggest that a previously unrecognized trait of this family, namely the ability to functional fusion with some other protein but yet to retain innate properties, is conserved. We described here the structural and evolutionary implications of the properties in this family enzyme.  相似文献   

20.
Although the lifestyles and infection strategies of plant pathogens are diverse, a prevailing feature is the use of an arsenal of secreted proteins, known as effectors, which aid in microbial infection. In the case of eukaryotic filamentous pathogens, such as fungi and oomycetes, effector proteins are typically dissimilar, at the protein sequence level, to known protein families and functional domains. Consequently, we currently have a limited understanding of how fungal and oomycete effectors promote disease. Protein biochemistry and structural biology are two methods that can contribute greatly to the understanding of protein function. Both techniques are dependent on obtaining proteins that are pure and functional, and generally require the use of heterologous recombinant protein expression systems. Here, we present a general scheme and methodology for the production and characterization of small cysteine‐rich (SCR) effectors utilizing Escherichia coli expression systems. Using this approach, we successfully produced cysteine‐rich effectors derived from the biotrophic fungal pathogen Melampsora lini and the necrotrophic fungal pathogen Parastagonospora nodorum. Access to functional recombinant proteins facilitated crystallization and functional experiments. These results are discussed in the context of a general workflow that may serve as a template for others interested in understanding the function of SCR effector(s) from their plant pathogen(s) of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号