首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid dissociation constants (Ka), usually expressed as pKa (-logKa) can be considered as indices of acid-base equilibria in solution and their evaluation under the solution conditions that exist during the exposure of biological systems to low temperatures are as important as the measurement of pH per se. The assignment of pH1 standards to define pH1 scales in the binary mixed solvent, dimethyl sulfoxide-water (27), has provided the basis for measuring the pKa1 values of some biological buffers in mixtures of Me2SO and H2O which have particular relevance to studies which demonstrate the “pH-dependent” recovery of smooth muscle after low-temperature storage (9, 31). “Practical” ionization conslants in water (pKa) and in 20% (ww) and 30% (ww) dimethylsulfoxide-water (pKa1) have been measured by potentiometric titration of a range of zwitterionic buffer compounds at 25, 0, ?5.5, and ?12 °C together with the respective buffer capacities and temperature coefficients. Measurements have been made with reference to the relevant standard states for each solvent system, thereby endowing the values with as much thermodynamic significance as possible.  相似文献   

2.
Saccharomyces cerevisiae NCYC 239 in the presence of glucose at temperatures under 303 K shows a time-dependent lowering of electrophoreric mobility v. At temperatures above 303 K, this time-dependent change in v is in the direction of increased mobilities. Cells suspended in buffer indicate a surface pKa of less than 4, whereas for cells suspended in buffered glucose it is impossible to derive a surface pKa. A kinetic study of the interaction of S. cerevisiae with glucose as a function of temperature allows calculation of an activation energy of 140 kJ X mol-1 for the combined processes of (i) uptake of glucose onto the cell wall, (ii) transfer through the cell wall and membrane, and (iii) the establishment of a steady glucose flux through the wall and membrane.  相似文献   

3.
Small reversible changes in the absorption spectra of HCN, CO, NO and O2 complexes of ferrous diacetyldeuteroperoxidase A, not hitherto observed, were attributed to proton dissociation of a distal amino acid residue. From spectrophotometric titration data the pKa was measured as 5.5 (HCN), 5.6 (ligand free), 6.0 (CO), 6.55 (NO) and 8.0 (O2). The value of 8.0 for the pKa of the O2 complex was also obtained from a curve of pH dependence of proton uptake in the reaction of the ferrous enzyme with O2. Absorption bands in the visible region were shifted to longer wavelengths in the order of CO to NO to O2 which is the decreasing order of the energy of π1 level of these diatomic ligands.The pKa values for CO complexes of ferroperoxidases, isoenzymes A and (B+C) were varied with substituents at the 2 and 4 positions of deuterohemin IX, and the ΔpKaΔpK3 ratio was about 0.3 in both series of isoenzyme preparations, where pK3 is a measure of basicity of pyrrole nitrogen.The present data support the previous conclusion (Yamada and Yamazaki (1974) Arch. Biochem. Biophys., 165, 728) that the pKa for ferroperoxidases, measured from small reversible changes in the absorption spectra, represents a proton dissociation constant of a distal amino acid residue and that there is hydrogen bonding between the residue and a ligand atom directly bound to the iron atom.  相似文献   

4.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

5.
Reversible flbrinogen polymer formation was examined at pH 6.6 and Γ/2 0.3. The equilibrium fraction of fibrinogen present as polymer, (Pmf)e, was determined by gel filtration for fibrinogen concentrations, FO, from 48 to 166 μm. Using FO in molarity, the experimental relation is ln [FO(Pmf)e] = 3.53 ln[FO(1 ? (Pmf)e)] + 23.73. This relation and attendant confidence limits are examined assuming, during filtration, that the original polymer population is either stable or selected polymer species dissociate to monomer. The possibility that all polymers are open is excluded since the calculated microscopic association constant would then increase with FO. Acceptable models are based on the assumptions that polymers are open, with association constant Ka, until restricted by closure, with association constant Kr, at an integral degree of polymerization, n. Values are selected on the basis that interaction parameters are independent of FO and that the required molar decrease in free energy is a minimum. Assuming polymer stability, the experimental relation at 273 °K gives n = 4, KrKa = 1.2 m, and Ka = 736 m?1. Temperature dependence gives ΔH= ?16.9 kcal/mol and ΔSOa = ?48.8 e.u. KrKa indicates a relation between changes in entropy. The probability is >0.90 that KrKa ? 56 m, which indicates a greater loss of degrees of freedom on closure than on association. Conclusions are not altered by the assumption that only the closed polymer species is stable. As ionic strength is decreased at pH 6.6, Ka increases. The clotting time of an otherwise constant system decreases as system Pmf is increased.  相似文献   

6.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

7.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

8.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

9.
The modification activity for the ferric enterobactin receptor in the Triton X-100 solubilized outer membrane of Escherichiacoli K-12 was adsorbed to a column of p-aminobenzamidine-//-sepharose and eluted with free benzamidine. Recombination of the dialyzed eluate with the filtrate from the column reinstituted conversion of the receptor from 81K to 81K1, the latter exhibiting an apparent molecular weight of 74,000 daltons in sodium dodecyl sulfate polyacrylamide gel analysis. The eluate from the p-aminobenzamidine column was shown to contain a component, coincident on gels with both protein and modification activity, which by mutational and other analyses appears to be identical with protein a of the outer membrane.  相似文献   

10.
Hydrolysis of benzyloxycarbonyl-GlyGlyPhe by nitro(Tyr 248)carboxypeptidase A over the pH range 4.88–8.04 has been examined. The nitroenzyme retains appreciable activity near pH 6.5, and the limiting value of Km is scarcely affected. The peptidase activity has a pH dependence characterized by the following parameters: pKE1 of 6.37 ± 0.19 and pKE2 of 6.60 ± 0.17 in kcatKm, and apparent pK of 5.59 ± 0.06 in Kcat. A spectroscopic pK of 6.75 ± 0.01, attributable to the nitro-Tyr 248 residue, has been determined. This correlates with the base-limb pKE2 in the kcatKm profile, which appears to be shifted from a higher value, pKE2 of 9.0, for the native enzyme. The single (acid-limb) pK which characterizes the kcat profile of the native enzyme is also found to be perturbed to a lesser extent by nitration. A kinetically competent reverse protonation mechanism, based on chemical modification and crystallographic evidence for the enzyme, is described.  相似文献   

11.
Four ethyl p-nitrophenyl alkylphosphonates were studied for the inhibition of elastase. A pH-dependence study using the assay substrate BOC-Ala-ONp or the phosphonate inhibitors showed the participation of an ionizing group with an apparent pKa of 6.9 and a decrease of reaction or inhibition at higher pH. Out of the four compounds investigated ethyl p-nitrophenyl pentylphosphonate was found to be the best inhibitor of elastase as judged from the value of k2KI. This value, which is the measure of inhibitory capacity, is the highest reported so far for the inhibition of elastase.  相似文献   

12.
The reaction of β-galactosidase (E. coli K12) with o-nitrophenyl-β-D-galactoside has been investigated over the temperature range +25° to ?30° using 50% aqueous dimethyl sulfoxide as solvent. At temperatures below ?10° turnover becomes very slow and a burst of o-nitrophenol is observed. Such a burst indicates the existence of a galactosyl-enzyme intermediate whose breakdown is rate-limiting and provides a means of determining the active site normality. The Arrhenius plot for turnover is linear in the ?25 to +25° range with Ea = 26 ± 3 kcal/mole. The presence of the 50% DMSO had no effect on Km but caused a small decrease in Kcat.  相似文献   

13.
The intracellular ionic distribution in uncleaved and cleaving Ambystoma eggs was investigated by analysing the influx of 3H2O, by determining the total content of Na+, K+ and Cl? in extracts of eggs at different stages by both flame spectrophotometry and ion-selective microelectrodes, and by the continuous measurement of the Na+, K+ and Cl? activities (aNai, aKi and aCli) using intracellular ion-selective microelectrodes. The electrical membrane potential (Em) and membrane resistance (Rm) were measured continuously in uncleaved and normally cleaving eggs as well as in eggs cleaving after removal of the vitelline membrane. The latter eggs expose their newly formed cleavage membrane to the external medium. Ionic permeability of the cell membrane before and during cleavage was analysed by a statistical comparison of the experimentally determined relationship between Em and the ionic gradients across the cell membrane with those predicted theoretically from a constant field equation in dependence on the relative permeability, through insertion of the measured intracellular ion activities.3H2O influx revealed the existence of a single intracellular water compartment (3.06 μl/egg) and a low water permeability (5.35 × 10?5 cm sec?1). Na+, K+ and Cl? concentrations were constant at 54.1, 72.1 and 73.1 mM respectively, while aNai, aKi and aCli were constant at 5.8, 51.8 and 59.7 mM respectively. It was concluded that all Cl? ions are in solution, while 12.5% of all K+ and 86% of all Na+ is bound. The uncleaved egg showed a positive Em of ca 40 mV and a specific membrane resistance of 39 kOhm cm2. Em could be described by a constant field equation with a permeability ratio PKPNa= 0.073. Shortly after the onset of first cleavage, Em rapidly decreased concomitant with a rise in Rm (68.5 kOhm cm2). This was interpreted as a drop in Na+ permeability. During the cleavage process Em progressively hyperpolarized and Rm decreased due to the insertion of a small fraction (3.3%) of the newly formed intercellular membrane into the cleavage furrow. This new membrane had a low specific resistance (0.69 kOhm cm2). Both in normally cleaving eggs and in eggs cleaving in the absence of the vitelline membrane Em behaved according to the constant field equation, PNaPK being 0.69 and 0.39, respectively. The differences with other amphibian eggs were discussed.  相似文献   

14.
The proton NMR spectra of the bis-4-substituted pyridinates of ferric tetrapheylporphyrin and octaethylporphyrin complexes have been recorded and analyzed fort he purpose of ascertaining the influence of variable axial lignad basicity on the bonding and magnetic properties of the iron. Under the conditions of slow ligand exhange where the bis stoichiometry can be established, all complexes exist exlusively in the low-spin, S = 12, state. The hyperfine shifts at ?60° C for both the porphyrins and axial ligands are shown to be very sensitive to the basicity of the substituted pyridine, as measured by its pKa. For the tetraphenylporphyrin complexes, we illustrate that the pattern of the meso-phenyl hyperfine shifts permits a quantitative separation of the contact and dipolar contributions to these shifts. This separation reveals that the shift variations with pyridine pKa are dominated by changes in the magnetic susceptibility anisotropy (dipolar shift), which decreases markedly upon lowering the pyridine basicity; ESR data support this conclusion in the few samples investigated. However, this trend in magnetic anisotropy with ligand basicity is not valid when comparing pyridines with other ligands such as imidazoles. The important change in the contact shift reflects a decrease in porphyrin → iron π change transfer as the ligand basicity is lowered. A correlation between increase in proton NMR linewidth and magnetic anisotrophy of the iron suggests that electron spin relaxation occurs via a process which couples the same levels that control the magnetic anisotropy.  相似文献   

15.
A kinetic study of the rate of pyruvate reduction by goldfish LDH-M4 (the homotetrameric form of lactate dehydrogenase which predominates in skeletal muscle) provided an analysis of the effects of pH and temperature on v (reaction velocity) and estimates of how temperature might affect catalysis in vivo, where the physiological pH regulation imposes a temperature coefficient of ?0.015 to ?0.020 pH unit/ °C. Consistent with published data for other LDHs, (i) V (maximum reaction velocity) was pH insensitive over a physiological pH range, (ii) the Km for pyruvate, KP, was sensitive to both pH and temperature, and (iii) the Km for NADH and the dissociation constant for NADH were both sensitive to temperature, but not to pH. V approximately doubled with each 10 °C (Ea = 11.7 kcal/mol). The effects of pH and temperature on KP were consistent with two enthalpic contributions, an ionization enthalpy (ΔHi°) of 7.2 kcal/mol (probably a histidine imidazole), and an enthalpy (ΔHSO) of 5.8 kcal/mol for the combination of pyruvate with the nonionized (pH ? pK′) LDH-NADH complex. When the pH was varied according to the physiological temperature coefficient, v was more sensitive to temperature than for conditions of constant pH, the usual design of kinetic experiments. This effect was due to the decreased temperature sensitivity of KP caused by partial concellation of the ΔHi° effect by the pH regulation: dpHdT ? dpK′dT. At constant pH, on the other hand, KP increased strongly with temperature and had the effect of offsetting (especially at higher pH values) the large increases in V. It was suggested that the magnitudes of ΔHi° and ΔHSO might have been important in the evolution of LDHs and other enzymes of cold-blooded animals.  相似文献   

16.
A theoretical relation between permeability and ionic concentrations in a bathing solution has been derived by assuming that only channels unoccupied by a competing non-permeable ion can transport ions specific for that channel. The affinities of the channel to the ion and the competitor are expressed by dissociation constants of the ion-site and competitor-site complexes in the channel.Analyses of the relation of K permeability to [K]o obtained from myelinated nerve fibres and Nitella cells revealed that the affinity of sites in K channels was independent of membrane potential, whereas K conductivity increased with depolarization. The value of the dissociation constant of the K+-site complex, K1, was estimated as 1244 mm for myelinated nerve, and K1 exp(ψ0FRT) for Nitella was 17.5 mm (ψ0 is the surface potential at the outer surface of membrane). The dependence on voltage of the total number of K channels was estimated from the dependence of K conductance on membrane potential at [K]o = [K]1 (obtained from the theoretical magnitude of K current computed by using the dissociation constants described above). It should be noted that when the channels are partially saturated with K+, neither the chord conductance nor the “permeability coefficient”, as defined in the Goldman and Hodgkin-Katz formulation, correctly represents the dependence on membrane potential of the total number of channels.  相似文献   

17.
The reaction of almond β-glucosidase with p-nitrophenyl-β-D-glucoside has been investigated over the temperature range +25° to ?45° using 50% aqueous dimethyl sulfoxide (DMSO) as solvent. At temperatures below those at which turnover occurs a “burst” of p-nitrophenol proportional to the enzyme concentration is observed. Such a “burst” suggests the existence of a glucosyl-enzyme intermediate whose breakdown is rate-limiting, and provides a method for measuring the active-site normality. At pH 5.9, 25°, the presence of 50% DMSO causes an increase in Km from 1.7×10?3M (0%) to 1.7×10?2M, whereas Vmax is unchanged. The DMSO thus apparently acts as a competitive inhibitor with Ki = 0.7M. The Arrhenius plot for turnover is linear over the accessible temperature range with Ea = 23.0 ± 2.0 kcal/mole.  相似文献   

18.
Plant populations growing at high densities undergo density-dependent mortality or self-thinning. The density of survivors ({ρ}) is related to their mean biomass (w) by the power equation w = Kρ?a, where a is 32. This is known as the “self-thinning rule”. This relationship is very general for plant populations and represents both an asymptotic time-trajectory for a particular population and a boundary line for juxtaposed joint values of w and p of separate populations. The traditional allometric derivation of the rule is outlined and shown to be unrealistic. An attempt to reformulate the self-thinning rule, based on the traditional allometric derivation, is shown to be unsatisfactory and an alternative allometric derivation is presented. The rule in its traditional statement w = Kρ?32 is still its best expression. The nature of the constant K is discussed with particular reference to its dimensionality.  相似文献   

19.
(1) The t12 for 1.3 mM D-allose uptake and efflux in insulin-stimulated adipocytes is 1.7 ± 0.1 min. In the absence of insulin mediated uptake of D-allose is virtually eliminated and the uptake rate (t12 = 75.8 ± 4.99 min) is near that calculated for nonmediated transport. The kinetic parameters for D-allose zero-trans uptake in insulin-treated cells are Kztoi = 271.3 ± 34.2 mM, Vztoi = 1.15 ± 0.12 mM · s?1. (2) A kinetic analysis of the single-gate transporter (carrier) model interacting with two substrates (or substrate plus inhibitor) is presented. The analysis shows that the heteroexchange rates for two substrates interacting with the transporter are not unique and can be calculated from the kinetic parameters for each sugar acting alone with the transporter. This means that the equations for substrate analogue inhibition of the transport of a low affinity substrate such as D-allose can be simplified. It is shown that for the single gate transporter the Ki for a substrate analogue inhibitor should equal the equilibrium exchange Km for this analogue. (3) Analogues substituted at C-1 show a fused pyranose ring is accepted by the transporter. 1-Deoxy-D-glucose is transported but has low affinity for the transporter. High affinity can be restored by replacing a fluorine in the β-position at C-1. The Ki for d-glucose = 8.62 mM; the Ki for β-fluoro-d-glucose = 6.87 mM. Replacing the ring oxygen also results in a marked reduction in affinity. The Ki for 5-thio-d-glucose = 42.1 mM. (4) A hydroxyl in the gluco configuration at C-2 is not required as 2-deoxy-d-galactose (Ki = 20.75 mM) has a slightly higher affinity than d-galactose (Ki = 24.49 mM). A hydroxyl in the manno configuration at C-2 interferes with transport as d-talose (Ki = 35.4 mM) has a lower affinity than d-galactose. (5) d-Allose (Km = 271.3 mM) and 3-deoxy-d-glucose (Ki = 40.31 mM) have low affinity but high affinity is restored by substituting a fluorine in the gluco configuration at C-3. The Ki for 3-fluoro-d-glucose = 7.97 mM. (6) Analogues modified at C-4 and C-6 do not show large losses in affinity. However, 6-deoxy-d-glucose (Ki = 11.08 mM) has lower affinity than d-glucose and 6-deoxy-d-galactose Ki = 33.97 mM) has lower affinity than d-galactose. Fluorine substitution at C-6 of d-galactose restores high affinity. The Ki for 6-fluoro-d-galactose = 6.67 mM. Removal of the C-5 hydroxymethyl group results in a large affinity loss. The Kid-xylose = 45.5 mM. The Ki for l-arabinose = 49.69 mM. (7) These results indicate that the important hydrogen bonding positions involved in sugar interaction with the insulin-stimulated adipocytes transporter are the ring oxygen, C-1 and C-3. There may be a weaker hydrogen bond to C-6. Sugar hydroxyls in non-gluco configurations may sterically hinder transport.  相似文献   

20.
A soluble macromolecule-peptide conjugate, [(Met)3-OPEG] inhibited the uptake of Met-Met-[14C] Met into S.cerevisiae. Uptake of leucine into this strain was not affected by Met3-OPEG under identical conditions. Inhibition by the macromolecular inhibitor was competitive (KI = 5.1 × 10?5M)and followed the structural requirments of the peptide transport systems in S.cerevisiae and C.albicans. These findings give the first example of inhibition of metabolite transport by a synthetic macromolecular competitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号