首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor l-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.  相似文献   

2.

Objective

To construct a strain of Corynebacterium glutamicum capable of efficiently producing 5-aminolevulinic acid (5-ALA) via the C4 pathway by modification of serine and glycine pathway using glucose as sole carbon source.

Results

The recombinant C. glutamicum strain AP2 harboring a codon-optimized hemA gene from Rhodobacter sphaeroides was used as host strain for 5-ALA production. A plasmid harboring the serine operon, which contained serB, serC and the site-specific mutant serA Δ197 , was constructed and introduced into C. glutamicumAP2, leading to an increase of 70% in 5-ALA production. Further overexpression of the glyA gene increased production of 5-ALA by 150% over the control. 5-ALA production was thus significantly enhanced by engineering the glycine biosynthetic pathway. C.glutamicum AG3 produced 3.4 ± 0.2 g 5-ALA/l in shake-flask cultures in CGIIIM medium with the addition of 7.5 g glycine/l.

Conclusion

This is the first report of remodeling the serine and glycine biosynthetic pathway to improve the production of 5-ALA in C. glutamicum.
  相似文献   

3.
4.

Objectives

To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli.

Results

We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coliE. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L.

Conclusions

Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
  相似文献   

5.
6.
Citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. We compared citramalate and acetate accumulation from glycerol using Escherichia coli strains expressing a modified citramalate synthase gene cimA from Methanococcus jannaschii. These studies revealed that gltA coding citrate synthase, leuC coding 3-isopropylmalate dehydratase, and acetate pathway genes play important roles in elevating citramalate and minimizing acetate formation. Controlled 1.0 L batch experiments confirmed that deletions in all three acetate-production genes (poxB, ackA, and pta) were necessary to reduce acetate formation to less than 1 g/L during citramalate production from 30 g/L glycerol. Fed-batch processes using MEC568/pZE12-cimA (gltA leuC ackA-pta poxB) generated over 31 g/L citramalate and less than 2 g/L acetate from either purified or crude glycerol at yields exceeding 0.50 g citramalate/g glycerol in 132 h. These results hold promise for the viable formation of citramalate from unrefined glycerol.  相似文献   

7.
We report the identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1)-encoding gene from the green oleaginous microalga Lobosphaera incisa (SAG 2468), a prolific photosynthetic producer of the n-6 very long chain polyunsaturated fatty acid (VLC-PUFA), arachidonic acid. The gene expression pattern of LiDGAT1 in L. incisa cells showed a weak increase in mRNA abundance in the course of nitrogen starvation under low light; however, LiDGAT1 expression was significantly upregulated with the progression of N-starvation under high light. Heterologous expression of LiDGAT1 in the neutral lipid-deficient mutant H1246 of Saccharomyces cerevisiae complemented the mutant phenotype and demonstrated an excelling TAG production compared to the yeast endogenous DGAT gene (DGA1). The TAG that formed in the LiDGAT1-expressing H1246 cells contained higher proportions of C16:0 and C18:0 fatty acids, suggesting that at least in a heterologous system, lacking PUFA biosynthesis, the enzyme seems to favor saturated over monounsaturated fatty acids. LiDGAT1 expression prompted an incorporation of several tested exogenous C18 PUFA and C20 VLC-PUFA into TAG. LiDGAT1-driven activity mediated the incorporation of either n-3 or n-6 VLC-PUFA, supplied as substrates for the TAG assembly; however, somewhat of a preference for 18:3n-3 over 20:4n-6 was demonstrated by lipidomics analysis. A structure-functional analysis of LiDGAT1 revealed that the N-terminal Pleckstrin homology (PH) domain is important but not essential for TAG generation in the yeast expression system. Deletion of the PH domain led to decreased TAG formation and ARA incorporation into TAG in yeast. Remarkably, we found the PH domain to be present in the DGAT1 of a number of chlorophytes, in a charophyceaen multicellular alga, in two diatoms and in the liverwort Marchantia polymorpha, but absent from those of red algae, higher plants and animals. Our findings indicate the promiscuity of LiDGAT1 for VLC-PUFA and suggest a specific role for this enzyme in the neutral lipid metabolism of L. incisa that needs to be further investigated by molecular engineering approaches.  相似文献   

8.
9.
10.

Objective

To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential.

Results

Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain.

Conclusion

A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.
  相似文献   

11.
Comparative genomics-based synteny analysis has proved to be an effective strategy to understand evolution of genomic regions spanning a single gene (micro-unit) to large segments encompassing hundreds of kilobases to megabases. Brassicaceae is in a unique position to contribute to understanding genome and trait evolution through comparative genomics because whole genome sequences from as many as nine species have been completed and are available for analysis. In the present work, we compared genomic loci surrounding the KCS17-KCS18 cluster across these nine genomes. KCS18 or FAE 1 gene encodes beta-ketoacyl synthase, (β-KCS) a membrane-bound enzyme that catalyses the key rate-limiting step during synthesis of VLCFAs such as erucic acid (C22) present in seed oil in Brassicaceae by elongating carbon chain from C18 to C22; knowledge on role of KCS17 in plant development is however lacking. Synteny across the genomic segments harbouring FAE1 showed variable levels of gene retention ranging between 26% (Arabidopsis thaliana and Brassica napus C03) and 89% (between A. thaliana and Brassica rapa A01), and gene density ranged between 1 gene/2.86 kb and 1 gene/4.88 kb. Interestingly, in diploid Brassica species, FAE1 was retained in only one of the sub-genomes in spite of the presence of three sub-genomes created as a result of genome triplication; in contrast, FAE1 was present at three loci, with four copies in Camellina sativa which is also known to have experienced a recent genome triplication revealing contrasting fates upon duplication. The organization of KCS17 and KCS18 as head-to-tail cluster was conserved across most of the species, except the C genome containing Brassicas, namely B. oleracea and B. napus, where disruptions because of other genes were observed. Even in the conserved blocks, the distance between KCS17 and KCS18 varied; the functional implication of the organization of KCS17-KCS18 as a cluster vis-à-vis fatty acid biosynthesis needs to be dissected, as the cis-regulatory region is expected to be present in the intergenic space. Phylogenetic analysis of KCS gene family along with KCS17-KCS18 from members of Brassicaceae reveals their ancestral relationship with KCS8-KCS9 block. Further comparative functional analysis between KCS8, KCS9, KCS16, KCS17 and KCS18 across evolutionary time-scale will be required to understand the conservation or diversification of roles of these members of KCS family in fatty acid biosynthesis during course of evolution.  相似文献   

12.
13.

Objectives

To enhance acid tolerance of Candida glabrata for pyruvate production by engineering AMP metabolism.

Results

The physiological function of AMP deaminase in AMP metabolism from C. glabrata was investigated by deleting or overexpresseing the corresponding gene, CgAMD1. At pH 4, CgAMD1 overexpression resulted in 59 and 51% increases in biomass and cell viability compared to those of wild type strain, respectively. In addition, the intracellular ATP level of strain Cgamd1Δ/CgAMD1 was down-regulated by 22%, which led to a 94% increase in pyruvate production. Further, various strengths of CgAMD1 expression cassettes were designed, thus resulting in a 59% increase in pyruvate production at pH 4. Strain Cgamd1Δ/CgAMD1 (H) was grown in a 30 l batch bioreactor at pH 4, and pyruvate reached 46.1 g/l.

Conclusion

CgAMD1 overexpression plays an active role in improving acid tolerance and pyruvate fermentation performance of C. glabrata at pH 4.
  相似文献   

14.
Mitochondrial genome fragments were examined in all species of the genus Capra (Bovidae, Artiodactyla). Phylogenetic analysis was carried out using 59 cytochrome b gene sequences (392 bp), and 22 sequences of the mtDNA variable fragment (402 bp). In the control region, two unique deletions were revealed. One of the deletions was found only in Capra cylindricornis (17 bp), while another one grouped C. caucasica with C. aegagrus (1 bp). The group of Caucasian wild goats splits into two clades, and furthermore, the sequences of C. caucasica demonstrate remarkable similarity to the sequences of C. aegagrus, while C. cylindricornis seems to have evolved independently for a long period of time. It was demonstrated that C. pyrenaica and C. ibex were extremely close to one another. Capra sibirica formed an outer group relative to the other species, and according to our data, was the most ancient species of the genus. On the contrary, genetic distance separating C. falconeri (the most independent species of the genus related to its morphology) from the other species is small.  相似文献   

15.
16.
The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.  相似文献   

17.
Ku70-binding proteins associate with Ku70 and their expression levels can affect DSB repair efficiency via the DNA-PK-dependent repair pathway. However, how Ku70-binding proteins in plants exert a regulatory function under abiotic stress is poorly understood. Here, we cloned and characterized a PoKub3 gene from 500-year-old Platycladus orientalis. With increasing age, PoKub3 expression in P. orientalis increased gradually. The PoKub3 expression levels in leaves were upregulated under salt, heat, UV-C and abscisic acid treatments according to qRT-PCR. Moreover, PoKub3 overexpression in Arabidopsis thaliana improved tolerance to salt and drought stress compared with wild-type (WT) and vector control (VC) plants. High RAB18 and DREB2A expression and low JAZ1 and ABI2 expression provided strong evidence that salt tolerance was enhanced in the overexpression plants. Similarly, high RAB18 and DREB2A expression, accompanied by low JAZ1 and LOX1 expression and high DREB1A, CPK10, GSTF6 and APX1 expression, suggested the drought tolerance mechanism was associated with the abscisic acid pathway. In addition, lower malondialdehyde content, electrolyte leakage and stomatal conductance, and higher soluble sugar and relative water contents in PoKub3 overexpression lines than in WT and VC plants demonstrated its role in salt and drought tolerance. Together, these findings show that PoKub3 positively regulates salt and drought tolerance by regulating stress-related genes.  相似文献   

18.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

19.
Many MCM1-AGAMOUS-DEFICIENS-SRF (MADS) genes have been proved to play an important role in the flowering time regulation of plants. The flowering-inhibiting factor AGAMOUS-LIKE 18 (AGL18) integrates into the two flowering-activating factors SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and AGAMOUS-LIKE 24 (AGL24), which play an important role during the plant developmental stages of the flowering pathway. However, it remains unknown whether and how the AGL18 protein directly interacts with SOC1 and/or AGL24 genes to regulate flowering time in Brassica juncea. In this study, three members (AGL18-1 in florescence, AGL18-2 and AGL18-3 in young seedlings) of the AGL18 family, and SOC1 and AGL24 in florescence were cloned in Brassica juncea. Yeast One-Hybrid assays and Dual-Glo® Luciferase assays showed that the SOC1 and AGL24 promoters interacted only with AGL18-1 protein, not AGL18-2 and AGL18-3. The typical conserved structure of the M-domain of AGL18-1 was the key region that mediated the interaction between the AGL18-1 protein and SOC1 promoter, and the I-domain, K-domain and C-domain did not regulate the interaction of AGL18-1/SOC1. In contrast, the K-domain and M-domain in AGL18-1 could mediate the interaction between the AGL18-1 protein and AGL24 promoter. This indicated that the AGL18-1 protein must have its unique functions that differed from AGL18-2 and AGL18-3. This work provides valuable information for in-depth studies into the molecular mechanisms of the AGL18 protein with SOC1 and AGL24 for flowering time control of Brassica juncea.  相似文献   

20.
The dek18 mutant of maize was previously classified as a collapsed kernel mutant named cp*-931A, which has a decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology during maize seed development. Seeds of the dek18 mutants are smaller compared to wild-type seeds and the vegetative development of dek18 is delayed. Here we analyzed the expression of several auxin-related genes in dek18 homozygous seeds and normal-sized seeds (Dek18/-) segregating on the same ear. Three genes related to auxin biosynthesis ZmAlliinase/Tar3, ZmTar1, and ZmYuc1 were highly downregulated in the mutant compared to the wild type. Sequence analysis of these genes revealed that no nucleotide difference is present in dek18 homozygous seeds compared to Dek18/-, except for ZmYuc1. Two different ZmYuc1 cDNAs sequences are produced: a normal-sized sequence of 1197 bp and a shorter coding sequence lacking the third exon. Ectopic expression of ZmYuc1 cDNAs in Arabidopsis indicates that (i) the ZmYuc1 gene is functional in Arabidopsis and (ii) the third exon is required for the enzymatic activity of the YUCCA1 protein. Because ZmYuc1, ZmTar1, and ZmAlliinase are barely expressed in dek18 homozygous seeds, it is proposed that the mutation responsible for the dek18 phenotype alters the upstream regulation of the auxin biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号