首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Crabtree effect (inhibition of respiration by glycolysis) is observed in cells with approximately equal glycolytic and respiratory capacities for ATP synthesis. Addition of glucose to aerobic suspensions of glucose-starved cells (Sarcoma 180 ascites tumor cells) causes a burst of respiration and lactate production due to ATP utilization for glucose phosphorylation by hexokinase and phosphofructokinase. This burst of activity is followed by inhibition of both respiration and glycolysis, the former to below the value before glucose addition (Crabtree effect). Both the respiratory rate and the glycolytic flux appear to be regulated by the cytosolic [ATP][ADP][Pi] albeit by completely different mechanisms. Respiration is regulated by the free energy of hydrolysis of ATP, such that the rate increases as the [ATP][ADP][Pi] decreases and decreases as the [ATP][ADP][Pi] increases. The regulatory enzymes of glycolysis are activated by ADP (AMP) and Pi and inhibited by ATP. Thus both respiration and glycolysis increase or decrease as the [ATP][ADP][Pi] decreases or increases. The parallel regulation of both ATP-producing pathways by this common metabolite ratio is consistent with the cytoplasmic [ATP][ADP][Pi] being an important determinant of homeostatic regulation of cellular energy metabolism.  相似文献   

2.
The oxygen dependence of cellular energy metabolism.   总被引:14,自引:0,他引:14  
Suspensions of cultured C 1300 neuroblastoma cells, sarcoma 180 ascites tumor cells, and Tetrahymena pyriformis cells were used to study the oxygen dependence of cellular energy metabolism. Cellular respiration was found to be almost independent of oxygen tension to values of less than 20 μm with an apparent Km for oxygen of less than 1 μm. In contrast, the reduction of mitochondrial cytochrome c was found to be dependent on oxygen tension at all values from 240 μm downward. Oxygen dependence was also observed in terms of cellular energy metabolism expressed as adenosine triphosphate and adenosine diphosphate concentrations. These data provide direct evidence that in intact cells mitochondrial oxidative phosphorylation is oxygen dependent throughout the physiological range of oxygen tension (air saturation and below). The respiratory rate is maintained constant when the oxygen tension is lowered by decreasing values of the cytosolic [ATP][ADP][Pi] and intramitochondrial [NAD]+][NADH] because these regulatory parameters adjust to maintain a constant rate of ATP synthesis. The lack of oxygen dependence in the respiratory rate means that the rate of cellular ATP utilization is essentially oxygen independent until the mitochondria can no longer synthesize ATP at the required rate and [ATP][ADP][Pi].  相似文献   

3.
The cytosolic phosphate potential was estimated in isolated rat liver parenchymal cells incubated with various gluconeogenic substrates. The value of the cytosolic [ATP][ADP][Pi] ratio was either estimated directly from measurements of ATP, ADP and Pi after digitonin fractionation of the cells, or calculated by the metabolite indicator method. When cells were incubated with lactate, pyruvate or alanine so that net flux through the indicator enzymes was in the gluconeogenic direction, there was excellent agreement between the values obtained by the two methods over a wide range of fluxes. However, when the cells were incubated with substrates that could be converted both to glucose and to lactate so that net flux through the indicator enzymes was in the glycolytic direction, a large difference in the values of the cytosolic [ATP]([ADP][Pi]) ratio as derived by the two methods was observed. It is concluded that the reaction catalysed by glyceraldehyde-3-phosphate dehydrogenase plus 3-phosphoglycerate kinase is out of equilibrium when flux through the reaction is in the glycolytic direction, and that use of the metabolite indicator method for the calculation of the cytosolic phosphate potential under these conditions leads to erroneous values.  相似文献   

4.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

5.
The dependence of the mitochondrial respiratory rate on the reduction of cytochrome c has been measured as a function of the exogenous [ATP][ADP][Pi] ratio and pH. The respiratory rate at [ADP][ADP][Pi] values of less than 10-1m-1 is proportional to the reduction of cytochrome c and independent of pH from pH 6.5 to pH 8.O. The maximal turnover number (at 100% reduction) for cytochrome c is approximately 70 s?1. As the [ATP][ADP][Pi] ratio is increased from 10?1m?1 to 104m?1, the respiration at any given level of reduction of cytochrome c is progressively inhibited. Greater inhibition is observed at more oxidized levels of cytochorme c with respiratory control values for oxidation of reduced cytochrome c exceeding 10. The behavior of mitochondrial respiratory control is shown to be quantitatively consistent with a proposed mechanism in which the regulation occurs in the reaction of oxygen with cytochrome oxidase. A steady-state rate expression is derived which fits the mitochondrial respiratory rate dependence on (i) the extramitochondrial [ATP][ADP][Pi] ratio; (ii) the level of reduction of cytochrome c (or the intramitochondrial [NAD+][NADH]) at different [ATP][ADP][Pi] values; (iii) the pH of the suspending medium. This rate expression appears to correctly predict the relationships of the cytoplasmic [ATP][ADP][Pi] ratio, the mitochondrial [NAD+][NADH] ratio, and the mitochondrial respiratory rate in intact cells as well as suspensions of isolated mitochondria.  相似文献   

6.
The dephosphorylation of ADP and ATP was characterized as the first-order rate constant in dependence on pH in the absence and presence of Cu2+, and together with Cu2+ and a second ligand. The reaction is strongly accelerated by Cu2+ and passes through pH optima at about 6.2 and 6.5 for the Cu2+ ?ADP and ?ATP systems, respectively (I = 0.1, NaClO4; 50°C). In the presence of 2,2′-bipyridyl (Bipy), ternary complexes are formed with the nucleotides ADP or ATP (NP), Cu(Bipy)(NP), which are very stable towards dephosphorylation over a large pH range. Similar stabilizing effects were observed in ternary complexes formed with imidazole or OH?. These results can easily be rationalized by taking into account that in the binary Cu2+ complexes macrochelates are formed by the interaction between the adenine moiety and the metal ion. This interaction is crucial for obtaining the labile species and hence, in the mixed-ligand complexes, where the macrophelate can not be formed, the phosphates are protected toward hydrolysis. In agreement with these results is the dephosphorylation behavior of Cu(CDP)? and Cu(CTP)2?; they are rather stable. This is in accord with the small coordination tendency of the cytosine moiety.By computing the pH dependence of the distribution of the several species, it is shown that the active species are Cu(ATP)2? and Cu(ADP)? and not the hydroxy complexes, [Cu(ATP)(OH)]26? and [Cu(ADP)(OH)24? as were suggested earlier. With the aid of the initial rate, ν0 = d[PO43?]dt, the rate laws of the ascending side of the pH optima were determined: ν0 = k[Cu(NP)][H+]. The descending side of the pH optima is attributed to the formation of Cu(NP)(OH), where the metal ion interaction with N-7 of the adenine moiety is inhibited.  相似文献   

7.
Joël Lunardi  Pierre V. Vignais 《BBA》1982,682(1):124-134
(1) N-4-Azido-2-nitrophenyl-γ-[3H]aminobutyryl-AdoPP[NH]P(NAP4-AdoPP[NH]P) a photoactivable derivative of 5-adenylyl imidodiphosphate (AdoPP[NH]P), was synthesized. (2) Binding of 3H]NAP4-AdoPP[NH]P to soluble ATPase from beef heart mitochrondria (F1) was studied in the absence of photoirradiation, and compared to that of [3H]AdoPP[NH]P. The photoactivable derivative of AdoPP[NH]P was found to bind to F1 with high affinity, like AdoPP[NH]P. Once [3H]NAP4-AdoPP[NH]P had bound to F1 in the dark, it could be released by AdoPP[NH]P, ADP and ATP, but not at all by NAP4 or AMP. Furthermore, preincubation of F1 with unlabeled AdoPP[NH]P, ADP, or ATP prevented the covalent labeling of the enzyme by [3H]NAP4-AdoPP[NH]P upon photoirradiation. (3) Photoirradiation of F1 by [3H]NAP4-AdoPP[NH]P resulted in covalent photolabeling and concomitant inactivation of the enzyme. Full inactivation corresponded to the binding of about 2 mol [3H]NAP4-AdoPP[NH]Pmol F1. Photolabeling by NAP4-AdoPP[NH]P was much more efficient in the presence than in the absence of MgCl2. (4) Bound [3H]NAP4-AdoPP[NH]P was localized on the α- and β-subunits of F1. At low concentrations (less than 10 μM), bound [3H]NAP4-AdoPP[NH]P was predominantly localized on the α-subunit; at concentrations equal to, or greater than 75 μM, both α- and β-subunits were equally labeled. (5) The extent of inactivation was independent of the nature of the photolabeled subunit (α or β), suggesting that each of the two subunits, α and β, is required for the activity of F1. (6) The covalently photolabeled F1 was able to form a complex with aurovertin, as does native F1. The ADP-induced fluorescence enhancement was more severely inhibited than the fluorescence quenching caused by ATP. The percentage of inactivation of F1 was virtually the same as the percentage of inhibition of the ATP-induced fluorescence quenching, suggesting that fluorescence quenching is related to the binding of ATP to the catalytic site of F1.  相似文献   

8.
An enzymatic method for [32P]phosphoenolpyruvate synthesis   总被引:7,自引:0,他引:7  
A convenient method for the enzymatic synthesis of [32P]phosphoenolpyruvate from [γ-32P]ATP using partially pufified phosphoenolpyruvate carboxykinase from Escherichia coli is described. The synthesis was shown to convert essentially all the [γ-32P]ATP to [32P]phosphoenolpyruvate, which was subsequently separated from residual [γ-32P]ATP and [32P]Pi by chromatography on AG-1-X8-bicarbonate resin.  相似文献   

9.
1. Some metabolic effects of increased mechanical activity by the Langendorff-perfused rat heart have been characterized using 31P-NMR. Mechanical activity was increased by infusion of ouabain (0.9?7.0·10?5 M), the ionophore R02-2985 (1·10?5 M) or epinephrine (5·10?8 M). 2. Similar metabolic changes accompanied infusion of each of the positive inotropic agents into hearts perfused with buffer containing 11 mM glucose as the substrate. In each case phosphocreatine concentrations decreased. During the period of epinephrine infusion the phosphocreatine began to recover its original concentration, although there were no significant changes in mechanical activity. 3. Comparisons of the metabolic changes accompanying the positive inotropic and chronotropic effects of epinephrine were made between hearts perfused with either glucose (11 mM), acetate (5 mM) or lactate (5 mM). A time-dependent decrease in phosphocreatine concentrations also accompanied infusion of epinephrine into hearts perfused with lactate as the sole exogenous substrate, but no statistically significant metabolite changes were observed after identical epinephrine infusions with acetate as the substrate. 4. Calculation of the concentration of free ADP assuming equilibrium in the creatine phosphokinase reaction allows estimation of the cytosolic phosphate potential ([ATP][ADP][Pi]), which appears to be dependent on a number of factors, including the nature of the exogenous substrate and the level of mechanical activity. 5. Thus, we conclude that there is no general correlation between the phosphate potential and the mitochondrial respiratory rate in the perfused rat heart.  相似文献   

10.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

11.
ATP or combinations of ATP with EDTA and EGTA can act as chelators to support succinate-driven, phosphate-requiring expansion of mitochondrial inner membrane-matrices. Contraction of these swollen mitochondria can be induced with antimycin, MgCl2 and ADP. The magnitude of ADP-induced contraction of mitochondria, swollen in the presence of ATP, is dependent on [ADP] and may be altered by the extramitochondrial concentrations of both Pi and ATP. In fact, the extent of contraction (+ΔA520) is a linear function of the thermodynamic parameter, ?ΔGp (free energy of hydrolysis of ATP), provided excessive concentrations of reactants are not present and the extents of matrix swelling are similar (e.g.ΔA520 is about 0.250) before starting contraction with ADP.  相似文献   

12.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

13.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

14.
15.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

16.
Phosphate transporter of bovine heart mitochondria was purified by solubilization of submitochondrial particles with octylglucoside and fractionation of the extract with ammonium sulfate. After reconstitution into liposomes the purified protein catalyzed phosphate transport which was sensitive to mersalyl and other SH reagents. Transport measured either as PiOH or PiPi exchange was proportional to protein concentration and time. The PiOH but not the PiPi exchange was stimulated several fold by valinomycin plus nigericin in the presence of K+. The reconstituted system provides a suitable assay during purification of the mitochondrial phosphate transporter.  相似文献   

17.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

18.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

19.
The role of acetaldehyde (AcH) in the ethanol-induced shift toward reduction of the cytosolic and mitochondrial free NAD+/free NADH ratios and its effect on the phosphorylation potential was investigated in livers of fed, intact rats given ethanol (1 g/kg ip). Calcium cyanamide, an inhibitor of mitochondrial aldehyde dehydrogenase, was administered to block predominantly intramitochondrial NADH production from AcH oxidation. Compared with ethanol alone, cyanamide almost totally reversed the elevation of the β-OH-butyrate/acetoacetate ratio but only slightly reduced the lactate/ pyruvate ratio, which was calculated to be in near equilibrium with the hepatic ethanol/ AcH ratio after cyanamide. Ethanol or cyanamide alone had no effect on ATP, ADP, or Pi, but together they significantly decreased the ATPADP · Pi ratio by increasing both ADP and Pi levels. No association between changes in the phosphorylation potential and the redox states was, however, observed. An ethanol-induced increase in AMP was abolished by cyanamide. The results demonstrate that the effect of ethanol on the mitochondrial redox state requires active AcH oxidation and suggest that moderate AcH accumulation likely to occur during alcohol-aversive drug treatment significantly lowers the cellular phosphorylation potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号