首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A detailed chronological electron-microscopic study of the bone remodeling sequence has been performed in the rat based on a previously described model (Tran Van et al. 1982) in which the remodeling activity is synchronized. This allowed the observation of the cellular and extracellular events during the bone remodeling process, including the activation of the sequential process and the reversal phase, intermediate between osteoclastic resorption and osteoblastic formation. Most important is the fact that throughout the whole process cells with the morphological characteristics of mononuclear phagocytes have been observed in proximity or in contact with the bone surface and/or the various bone cells. Coated pits (receptor-mediated endocytosis) are frequently observed in close apposition to bone spicules and gap junctions are frequent between the cells. These observations suggest that, besides being likely candidates as osteoclast precursors, mononuclear phagocytes may play an important role in bone remodeling.  相似文献   

2.
The ability to assess the effects of an implant on bone remodeling is of particular importance to prosthesis placement planning and associated treatment assurance. Prediction of on-going bone responses will enable us to improve the performance of a restoration. Although the bone remodeling for long bones had been extensively studied, there have been relatively few reports for dental scenarios despite its increasing significance with more and more dental implant placements. This paper aimed to develop a systematic protocol to assess mandibular bone remodeling induced by dental implantation, which extends the remodeling algorithms established for the long bones into dental settings. In this study, a 3D model for a segment of a human mandible was generated from in vivo CT scan images, together with a titanium implant embedded to the mandible. The results examined the changes in bone density and stiffness as a result of bone remodeling over a period of 48 months. Resonance frequency analysis was also performed to relate natural frequencies to bone remodeling. The density contours are qualitatively compared with clinical follow-up X-ray images, thereby providing validity for the bone remodeling algorithm presented in dental bone analysis.  相似文献   

3.
Bone density is controlled by interactions between osteoclasts, which resorb bone, and osteoblasts, which deposit it. The semaphorins and their receptors, the plexins, originally shown to function in the immune system and to provide chemotactic cues for axon guidance, are now known to play a role in this process as well. Emerging data have identified Semaphorin 4D (Sema4D) as a product of osteoclasts acting through its receptor Plexin-B1 on osteoblasts to inhibit their function, tipping the balance of bone homeostasis in favor of resorption. Breast cancers and other epithelial malignancies overexpress Sema4D, so we theorized that tumor cells could be exploiting this pathway to establish lytic skeletal metastases. Here, we use measurements of osteoblast and osteoclast differentiation and function in vitro and a mouse model of skeletal metastasis to demonstrate that both soluble Sema4D and protein produced by the breast cancer cell line MDA-MB-231 inhibits differentiation of MC3T3 cells, an osteoblast cell line, and their ability to form mineralized tissues, while Sema4D-mediated induction of IL-8 and LIX/CXCL5, the murine homologue of IL-8, increases osteoclast numbers and activity. We also observe a decrease in the number of bone metastases in mice injected with MDA-MB-231 cells when Sema4D is silenced by RNA interference. These results are significant because treatments directed at suppression of skeletal metastases in bone-homing malignancies usually work by arresting bone remodeling, potentially leading to skeletal fragility, a significant problem in patient management. Targeting Sema4D in these cancers would not affect bone remodeling and therefore could elicit an improved therapeutic result without the debilitating side effects.  相似文献   

4.
Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.  相似文献   

5.
6.
7.
The mechanisms behind the influence of PHPT on the skeleton are closely connected with bone turnover. Throughout life, the skeleton is continuously renewed by bone remodeling, a process which serves the purpose of repairing damaged bone and adapting the skeleton to changes in physical load. In this process, old bone is removed by osteoclastic resorption and new bone is laid down by osteoblastic formation. Bone mass increases with growth in the first decades of life, and around the age of 30 years the peak bone mass is reached. Thereafter, as a result of mechanisms involving bone remodeling, a net bone loss is seen: 1) A reversible bone loss because of increase in the remodeling space, i.e., the amount of bone resorped but not yet reformed during the remodeling cycle. This mechanism leads to decrease in average trabecular thickness and cortical width, and to increase in cortical porosity. 2) An irreversible bone loss caused by negative bone balance, where the amount of bone formed by the osteoblasts is exceeded by the amount of bone resorbed by the osteoclasts at the same remodeling site. Consequently, progressive thinning of trabecular elements, reduced cortical width and increased cortical porosity is seen. 3) Finally, perforation of trabecular plates by deep resorption lacunae leads to complete irreversible removal of structural bone components. Parathyroid hormone, together with vitamin D, are the principal modulators in calcium homeostasis. The main actions of PTH are executed in bone and kidneys. In the kidneys, PTH increases the tubular re-absorption of calcium, thereby tending to increase serum calcium. PTH also induces increased conversion of 25(OH)-D to 1,25(OH)2-D. This last action, enhances intestinal calcium absorption and increased skeletal calcium mobilization, which further adds to the circulating calcium pool. In bone, the "acute" regulatory actions of PTH on serum calcium are probably accompliced via activation of osteocytes and lining cells. A second mechanism of PTH in bone is the regulation of bone remodeling. The action seems to be an increased recruitment from osteoblastic precursor cells and activation of mature osteoclasts. It is supposed that these responses are predominantly mediated indirectly through actions on osteoblast-like or nonosteoblast-like stromal cells, as osteoclasts themselves to not have PTH receptors. Bone metabolism and bone mass are studied by biochemical bone markers, bone histomorphometry, and densitometry. As bone markers and bone histomorphometry give information on bone metabolism from different points of view, these methods are preferably combined. Histomorphometry gives detailed information about bone turnover on cellular level, the whole remodeling sequence is described, and the bone balance can be calculated. However, they focus on a small volume, and may, therefore, not be representative for the whole skeleton. On the other hand, studies of bone markers supply general information about turnover in the whole skeleton, but they do not give facts on the bone turnover on the cellular or tissue level and bone balance. Bone densitometry is the principal method in studying bone mass, but valuable information concerning bone structure also comes from histomorphometry. Bone remodeling is considerably increased in PHPT. Studies of bone markers show increase in both resorptive and formative markers, and the increases seem to be of equivalent size. This is in agreement with histomorphometric findings and shows that the coupling between resorption and formation is preserved. By histomorphometry on iliac crest biopsies, trabecular bone remodeling is found increased by 50%, judged by the increase in activation frequency; a measure of how often new remodeling is initiated on the trabecular bone surface. In PHPT, such remodeling activity is repeated about once every year. Reconstruction of the whole remodeling sequence does not show major deviations in lengths of the resorptive and formative periods compared to normal. Furthermore, the amount of bone removed by the osteoclasts during the resorptive phase is matched by the amount of new bone formed by the osteoblasts leading to a bone balance very close to zero. Compared with trabecular bone, the turnover rate in cortical bone is considerably lower, around 10%. Remodeling of the cortical bone takes place at the endocortical, the pericortical, and the Haversian surfaces. Endocortical bone remodeling activities are very similar to trabecular remodeling activities with good correlation between individual parameters. Periosteal remodeling activity is negligible in PHPT, as it is in the normal state. Cortical porosity, which reflects the remodeling activity on the Haversian surface, is increased by 30-65% in PHPT. (ABSTRACT TRUNCATED)  相似文献   

8.
Electro-mechanical behavior of wet bone--Part I: Theory   总被引:1,自引:0,他引:1  
The remodeling properties of bones due to various stimuli have been of substantial interest to the scientists. Examination of electro-mechanical properties of bone and their relation to remodeling and osteogenesis have been investigated mainly by experimental means. In this study, by using continuum physics, it is shown that the remodeling of bones can be formulated theoretically in terms of electrical and mechanical effects. The interactions among the constituents of bone (bone matrix, bone salts, electrolytes and hydrogen ions) and effects of various stimuli (mechanical, electrical and chemical) on the remodeling mechanism of bone tissue are interpreted with this model. Moreover, the stimulation of osteogenesis by electrical means is predicted.  相似文献   

9.
Bone remodeling is the normal physiologic process that is used by vertebrates to maintain a constant bone mass during the period bracketed by the end of puberty and the onset of gonadal failure in later life. Besides the well-characterized and critical process of local regulation of bone remodeling, achieved by autocrine and paracrine mechanisms, recent genetic studies have shown that there is a central control of bone formation, mediated by a neuroendocrine mechanism. This central regulation involves leptin, an adipocyte-secreted hormone that controls body weight, reproduction and bone remodeling, and which binds to and exerts its effect through the cells of the hypothalamic nuclei in the brain. This genetic result in mice is in line with clinical observations in humans and generates a whole new direction of research in bone physiology. BioEssays 22:970-975, 2000.  相似文献   

10.
Several studies have demonstrated that vitamin D regulates growth and differentiation in bone cells in vitro. In addition, in vivo studies have shown that vitamin D stimulates bone formation, increases the number of osteoblast precursor cells and prevents bone mineral loss. These observations indicate that vitamin D may have anabolic effects on bone, and thus therapeutic potential in the treatment of osteoporosis. However, little is known about the effects of vitamin D on apoptosis in bone cells and about the contribution of this process to the effect of vitamin D on bone mineral loss. To investigate this aspect in more detail, we studied the effect of 1alpha,25(OH)(2)D(3) and a series of analogues on apoptosis in human osteosarcoma cells. No significant induction of apoptosis was observed with any of the compounds after a 5 day treatment period. In contrast, some of the analogues showed a tendency to protect the cells from undergoing apoptosis. This anti-apoptotic effect of vitamin D was further confirmed by the ability of 1alpha,25(OH)(2)D(3) to suppress camptothecin- and staurosporin-induced DNA fragmentation in the cells. In cultures treated simultaneously with 1alpha,25(OH)(2)D(3) in combination with camptothecin or staurosporin, the level of DNA fragmentation was markedly reduced compared with cultures treated with camptothecin or staurosporin alone. On the basis of the present results, it is therefore concluded that vitamin D displays anti-apoptotic effects in human osteoblast-like osteosarcoma cells in vitro. This observation suggests that besides regulating growth and differentiation, vitamin D exerts its anabolic effects on bone by protecting osteoblastic cells from undergoing apoptosis.  相似文献   

11.
Bone remodeling occurs in an adult’s skeleton to adapt its architecture to external loadings. This involves bone resorption by osteoclasts cells followed by formation of new bone by osteoblasts cells. During bone remodeling, osteoclasts and osteoblasts interact with each other by expressing autocrine and paracrine factors that regulate cells’ population. Therefore, changes in bone density depend on the amount of each acting cell population. The aim of this paper is to propose a model for the bone remodeling process, which takes into account the opposite activity of both types of cells. For this purpose, a system of differential equations, proposed by Komarova et al. (Bone 33:206–215, 2003), is introduced to describe bone cell interactions using parameters which characterize the autocrine and paracrine factors. Such equations allow us to determine how the autocrine and paracrine factors vary in response to an external stimulus. It is assumed that an equilibrium state can be obtained for values of stimulus near to some reference quantity. Far from this value, unbalanced activity of osteoblasts and osteoclasts is observed, which leads to bone apposition or resorption. The proposed model has been implemented into the finite element software ABAQUS to analyze the qualitative response of a bone structure when subjected to certain mechanical loadings. Obtained results are satisfactory and in accordance with the expected bone remodeling behavior.  相似文献   

12.
Bone is a specialized connective tissue with a calcified extracellular matrix in which cells are embedded. Besides providing the internal support of the body and protection for vital organs, bone also has several important metabolic functions, especially in mineral homeostasis. Far from being a passive tissue, it is continuously being resorbed and formed again throughout life, by a process known as bone remodeling.Bone development and remodeling are influenced by many factors, some of which may be modifiable in the early steps of life. Several studies have shown that environmental factors in uterus and in infancy may modify the skeletal growth pattern, influencing the risk of bone disease in later life. On the other hand, bone remodeling is a highly orchestrated multicellular process that requires the sequential and balanced events of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. These processes are accompanied by specific gene expression patterns which are responsible for the differentiation of the mesenchymal and hematopoietic precursors of osteoblasts and osteoclasts, respectively, and the activity of differentiated bone cells. This review summarizes the current understanding of how epigenetic mechanisms influence these processes and their possible role in common skeletal diseases.  相似文献   

13.
Bone remodeling theory applied to the study of n unit-elements model.   总被引:4,自引:0,他引:4  
The aim of this paper is to illustrate the application of mathematical tools for the analysis of non-linear dynamical systems to the study of global stability of one kind of bone remodeling scheme applied to n unit-elements model. The particular aspects analyzed here are the stationary states related to this theory and a condition of their stability. The non-linear equations governing the remodeling process are solved by finite-difference method and the well-known results on the heterogeneous spatial organizations have been retrieved and confirm the analytical study. This kind of remodeling theory is useful for investigating the effects of physiological parameters on the development, maintenance, and adaptation of bone under mechanical loading.  相似文献   

14.
Bone is a unique tissue providing support, movement, and mineral balance for the body. Bone growth is achieved in the young by a process called modeling, and maintained during adulthood by a process termed remodeling. Three types of cells are responsible for the formation of cartilage and bone; the chondrocyte, osteoblast, and osteoclast. These cells are under the influence of a plethora of regulatory molecules, which govern their action to provide an individual optimal bone mass. Interruption of this homeostatic machinery, especially in the elderly, often results in a loss of bone mass (osteoporosis) or cartilage damage (rheumatoid arthritis). Many pharmacological agents have been made available in an effort to prevent or alleviate these pathologies, however, one vector often overlooked is the diet. This review focuses on the relationship between dietary polyunsaturated fatty acids and bone biology, both in vivo and in vitro.  相似文献   

15.
16.
The present paper addresses the following question can a simple regulatory bone remodeling model predict effects of viscosity on the trabecular morphology? For that, we propose an extension of a previous bone remodeling model by taking into account the viscosity properties of the tissue. Zener’s law is used to describe the mechanical behavior of the bone and a specific law of the apparent bone density rate is proposed. Based on stability analysis, numerical simulations are then performed to investigate the viscosity role on simulations of the bone remodeling process. We show that the viscous contribution affects the evolution of the apparent bone density, by slowing down the adaptation process, which seems to be confirmed by simulations with real data obtained from rat tibia.  相似文献   

17.
Bone undergoes continuous remodeling under physiological and pathological conditions. Failure of the regulation of this process leads to several disorders involving bone erosion. This series of events is mainly based on the action of proteinases, particularly matrix metalloproteinases (MMPs). MMPs have been recently suggested as potential bone resorption markers which could be added to the commonly used ones, in order to predict outcome of disease processes and healing, and to monitor disease response to treatment. As for classical biochemical bone markers, MMPs are far from being applied in primary clinical diagnosis, but they could be promising in some cases for disease prognosis. MMPs as bone remodeling biomarkers could provide information that boosts our understanding of the prognosis, disease activity and pathogenesis of bone disorders. Clarifying the MMPs’ role in bone remodeling and healing could potentially help predict disease progression and the effects of direct specific therapy.  相似文献   

18.
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).  相似文献   

19.
Li Y  Kong D  Ahmad A  Bao B  Sarkar FH 《PloS one》2012,7(3):e33011
Prostate cancer (PCa) bone metastases have long been believed to be osteoblastic because of bone remodeling leading to the formation of new bone. However, recent studies have shown increased osteolytic activity in the beginning stages of PCa bone metastases, suggesting that targeting both osteolytic and osteoblastic mediators would likely inhibit bone remodeling and PCa bone metastasis. In this study, we found that PCa cells could stimulate differentiation of osteoclasts and osteoblasts through the up-regulation of RANKL, RUNX2 and osteopontin, promoting bone remodeling. Interestingly, we found that formulated isoflavone and 3,3'-diindolylmethane (BR-DIM) were able to inhibit the differentiation of osteoclasts and osteoblasts through the inhibition of cell signal transduction in RANKL, osteoblastic, and PCa cell signaling. Moreover, we found that isoflavone and BR-DIM down-regulated the expression of miR-92a, which is known to be associated with RANKL signaling, EMT and cancer progression. By pathway and network analysis, we also observed the regulatory effects of isoflavone and BR-DIM on multiple signaling pathways such as AR/PSA, NKX3-1/Akt/p27, MITF, etc. Therefore, isoflavone and BR-DIM with their multi-targeted effects could be useful for the prevention of PCa progression, especially by attenuating bone metastasis mechanisms.  相似文献   

20.
How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号