首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

2.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatinecreatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine][creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

3.
1. Creatine kinase occurs in high concentration in the soluble proteins of dogfish muscle. A fourfold purification gives essentially pure enzyme but with a low specific activity. This appears to be a property of the native enzyme and not a result of the isolation procedures used. 2. The amino acid composition is similar to that of other phosphagen kinases, but the enzyme differs from mammalian creatine kinases in having four thiol groups readily reactive towards 5,5′-dithiobis-(2-nitrobenzoic acid). Titration of two thiol groups is accompanied by almost complete loss of activity. The remaining two thiol groups react at different rates, suggesting that modifying the third thiol group affects the reactivity of the fourth thiol group. 3. The enzyme is markedly protected against inactivation by iodoacetamide by MgATP or MgADP. Addition of creatine to MgADP decreases protection, but the further addition of Cl restores protection to the original value. The quaternary MgADP–creatine–enzyme–nitrate complex protects very strongly as is found for the rabbit enzyme. The involvement of the conformational state of the enzyme in such effects is discussed. 4. Creatine kinase from both dogfish and rabbit is equally sensitive to urea denaturation. Urea protects the dogfish enzyme by about 9% against inhibition by iodoacetamide. 5. The formation of a hybrid between the dogfish and rabbit enzymes in vitro has been demonstrated. 6. At high substrate concentrations the dogfish enzyme shows apparent ordered kinetics. The effect of temperature on Vmax. and the Michaelis constants for MgATP and creatine were determined. These and changes in the apparent activation energy suggest that limited adaptation has occurred commensurate with physiological need.  相似文献   

4.
We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics.  相似文献   

5.
A mathematical model of the compartmentalized energy transfer in cardiac cells is described and used for interpretation of novel experimental data obtained by using phosphorus NMR for determination of the energy fluxes in the isolated hearts of transgenic mice with knocked out creatine kinase isoenzymes. These experiments were designed to study the meaning and importance of compartmentation of creatine kinase isoenzymes in the cells in vivo. The model was constructed to describe quantitatively the processes of energy production, transfer, utilization, and feedback between these processes. It describes the production of ATP in mitochondrial matrix space by ATP synthase, use of this ATP for phosphocreatine production in the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocation, diffusional exchange of metabolites in the cytoplasmic space, and use of phosphocreatine for resynthesis of ATP in the myoplasmic creatine kinase reaction. It accounts also for the recently discovered phenomenon of restricted diffusion of adenine nucleotides through mitochondrial outer membrane porin pores (VDAC). Practically all parameters of the model were determined experimentally. The analysis of energy fluxes between different cellular compartments shows that in all cellular compartments of working heart cells the creatine kinase reaction is far from equilibrium in the systolic phase of the contraction cycle and approaches equilibrium only in cytoplasm and only in the end-diastolic phase of the contraction cycle.Experimental determination of the relationship between energy fluxes by a 31P-NMR saturation transfer method and workload in isolated and perfused heart of transgenic mice deficient in MM isoenzyme of the creatine kinase, MM -/- showed that in the hearts from wild mice, containing all creatine kinase isoenzymes, the energy fluxes determined increased 3-4 times with elevation of the workload. By contrast, in the hearts in which only the mitochondrial creatine kinase was active, the energy fluxes became practically independent of the workload in spite of the preservation of 26% of normal creatine kinase activity. These results cannot be explained on the basis of the conventional near-equilibrium theory of creatine kinase in the cells, which excludes any difference between creatine kinase isoenzymes. However, these apparently paradoxical experimental results are quantitatively described by a mathematical model of the compartmentalized energy transfer based on the steady state kinetics of coupled creatine kinase reactions, compartmentation of creatine kinase isoenzymes in the cells, and the kinetics of ATP production and utilization reactions. The use of this model shows that: (1) in the wild type heart cells a major part of energy is transported out of mitochondria via phosphocreatine, which is used for complete regeneration of ATP locally in the myofibrils - this is the quantitative estimate for PCr pathway; (2) however, in the absence of MM-creatine kinase in the myofibrils in transgenic mice the contraction results in a very rapid rise of ADP in cytoplasmic space, that reverses the mitochondrial creatine kinase reaction in the direction of ATP production. In this way, because of increasing concentrations of cytoplasmic ADP, mitochondrial creatine kinase is switched off functionally due to the absence of its counterpart in PCr pathway, MM-creatine kinase. This may explain why the creatine kinase flux becomes practically independent from the workload in the hearts of transgenic mouse without MM-CK. Thus, the analysis of the results of studies of hearts of creatine kinase-deficient transgenic mice, based on the use of a mathematical model of compartmentalized energy transfer, show that in the PCr pathway of intracellular energy transport two isoenzymes of creatine kinase always function in a coordinated manner out of equilibrium, in the steady state, and disturbances in functioning of one of them inevitably result in the disturbances of the other component of the PCr pathway. In the latter case, energy is transferred from mitochondria to myofibrils by alternative metabolic pathways, probably involving adenylate kinase or other systems.  相似文献   

6.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

7.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

8.
Summary A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as a fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.  相似文献   

9.
Some historical aspects of development of the concepts of functional coupling, metabolic channelling, compartmentation and energy transfer networks are reviewed. Different quantitative approaches, including kinetic and mathematical modeling of energy metabolism, intracellular energy transfer and metabolic regulation of energy production and fluxes in the cells in vivo are analyzed. As an example of the system with metabolic channelling, thermodynamic aspects of the functioning the mitochondrial creatine kinase functionally coupled to the oxidative phosphorylation are considered. The internal thermodynamics of the mitochondrial creatine kinase reaction is similar to that for other isoenzymes of creatine kinase, and the oxidative phosphorylation process specifically influences steps of association and dissociation of MgATP with the enzyme due to channelling of ATP from adenine nucleotide translocase. A new paradigm of muscle bioenergetics - the paradigm of energy transfer and feedback signaling networks based on analysis of compartmentation phenomena and structural and functional interactions in the cell is described. Analysis of the results of mathematical modeling of the compartmentalized energy transfer leads to conclusion that both calcium and ADP, which concentration changes synchronously in contraction cycle, may simultaneously activate oxidative phosphorylation in the muscle cells in vivo. The importance of the phosphocreatine circuit among other pathways of intracellular energy transfer network is discussed on the basis of the recent data published in the literature, with some experimental demonstration. The results of studies of perfused rat hearts with completely inhibited creatine kinase show significantly decreased work capacity and respectively, energy fluxes, in these hearts in spite of significant activation of adenylate kinase system (Dzeja et al. this volume). These results, combined with those of mathematical analysis of the energy metabolism of hearts of transgenic mice with switched off creatine kinase isoenzymes confirm the importance of phosphocreatine pathway for energy transfer for cell function and energetics in mature heart and many other types of cells, as one of major parts of intracellular energy transfer network and metabolic regulation.  相似文献   

10.
Calcium transport into tomato (Lycopersicon esculentum Mill, cv Castlemart) fruit tonoplast vesicles was studied. Calcium uptake was stimulated approximately 10-fold by MgATP. Two ATP-dependent Ca2+ transport activities could be resolved on the basis of sensitivity to nitrate and affinity for Ca2+. A low affinity Ca2+ uptake system (Km > 200 micromolar) was inhibited by nitrate and ionophores and is thought to represent a tonoplast localized H+/Ca2+ antiport. A high affinity Ca2+ uptake system (Km = 6 micromolar) was not inhibited by nitrate, had reduced sensitivity to ionophores, and appeared to be associated with a population of low density endoplasmic reticulum vesicles that contaminated the tonoplast-enriched membrane fraction. Arrhenius plots of the temperature dependence of Ca2+ transport in tomato membrane vesicles showed a sharp increase in activation energy at temperatures below 10 to 12°C that was not observed in red beet membrane vesicles. This low temperature effect on tonoplast Ca2+/H+ antiport activity could only by partially ascribed to an effect of low temperature on H+-ATPase activity, ATP-dependent H+ transport, passive H+ fluxes, or passive Ca2+ fluxes. These results suggest that low temperature directly affects Ca2+/H+ exchange across the tomato fruit tonoplast, resulting in an apparent change in activation energy for the transport reaction. This could result from a direct effect of temperature on the Ca2+/H+ exchange protein or by an indirect effect of temperature on lipid interactions with the Ca2+/H+ exchange protein.  相似文献   

11.
Effects of T3- and T4-induced thyrotoxicosis on temperature-dependent Arrhenius kinetics of succinate oxidase and Mg2+- and Mg2+ + 2,4-dinitrophenol-dependent ATPase activities in rat heart mitochondria were examined, For succinate oxidase system, treatment with T3 and T4 caused increase in the energy of activation in high temperature range in a dose-dependent manner. For low temperature range, increase in energy of activation was apparent only with higher doses of the hormones; with low doses a small but reproducible decrease was evinced. The phase transition temperature decreased significantly under these conditions. For the Mg2+- and Mg2++2,4-dintro-phenol-dependent-ATPase activities, the activation energy values in high temperature range decreased in general. Activation energy values in low temperature range recorded a generalized increase in the Mg2+-ATPase enzyme system while the value did not change significantly for the Mg2+ + 2,4-dinitrophenol-ATPase; phase transition temperature registered a small but reproducible decrease under these conditions. The results are suggestive of increased membrane fluidization possibly through increased proportion of unsaturated fatty acids. The differential effects seen for succinate oxidase and ATPase systems are consistent with different lipid protein domains of these enzyme systems.  相似文献   

12.
The kinetics of inhibition of human erythrocyte glyceraldehyde-3-phosphate dehydrogenase by iodoacetate were studied in the intact cell and in vitro. The kinetics were determined using 1H-NMR to follow solvent exchange of 1H and 2H at the C-2 position of lactate. The exchange occurs via a series of enzyme-catalysed reactions, including that catalysed by glyceraldehyde-3-phosphate dehydrogenase. A direct assay with quenching of the inhibition was also used to check the results. Iodoacetate was shown to act as an active site-directed inhibitor of the dehydrogenase. The enzyme inhibition patterns, which are characterised by a binding step and a kinetic step, are similar in situ and in vitro. Membrane binding, however, was found to alter the inhibition pattern for the enzyme in vitro.  相似文献   

13.
The in situ and in vitro regulation of nitrate reductase (NR; EC 1.6.6.1) activity by glucose (Glc) and glucose‐6‐phosphate (Glc‐6P) was studied in leaf segments of 7‐day‐old corn plants. In situ, Glc and Glc‐6P not only prevented NR inactivation, but also slightly activated the enzyme relative to that in fresh attached leaves in the light. Glc and Glc‐6P also reactivated NR that had previously been inactivated by incubating the segments for 30 min in the dark. Sugars were effective, even in the presence of cycloheximide, but not of cantharidin, an inhibitor of type 2A phosphoprotein phosphatase (PP2A). In segments kept in the dark, the inhibition of protein dephosphorylation by cantharidin showed that the phosphorylation of NR was not inhibited by either Glc or Glc‐6P, as the enzyme was inactivated to the same extent whether or not sugars (P) were present in the incubation medium. In vitro, as in situ, neither Glc nor Glc‐6P could prevent NR phosphorylation. In spite of some reports showing that sugar‐phosphates can act on kinases and prevent NR phosphorylation, the results presented here suggest that, in corn leaves, sugars and their phosphorylated derivatives probably activate NR in situ mainly by inducing protein dephosphorylation. The incubation of crude extract in a water bath at 27°C for 45 min resulted in the activation of NR that was blocked by cantharidin, but was not increased by either Glc or Glc‐6P. This result suggests that the presence of another metabolite(s) and the maintenance of cell functionality may be necessary for the sugar‐induced activation of NR. A sugar‐triggered signalling pathway independent of protein synthesis may be involved in the process. l ‐Glc and 6‐deoxyglucose were ineffective in reactivating NR in darkened segments, whilst 2‐deoxyglucose was as effective as Glc itself. The effect of sugar analogues shows that, although Glc has to enter the cell and be phosphorylated to activate NR, further metabolism is not necessary. As sugar‐phosphates, such as Glc‐6P and fructose‐6‐phosphate (Fru‐6P), also activate NR, it seems that hexokinases are not involved in the pathway that leads to the in situ dephosphorylation of NR. In vitro, Glc‐6P mildly but rapidly activated NR by a mechanism insensitive to cantharidin. The addition of an increasing concentration of Mg2+ to crude extract containing Glc‐6P increased the Mg2+ inhibition of NR. This result suggests that the hexose‐phosphate does not prevent Mg2+ association with NR. It is possible that Glc‐6P activates NR in vitro by inducing the dissociation of 14‐3‐3 from the phospho‐NR (pNR)/Mg/14‐3‐3 complex.  相似文献   

14.
The nonlinear temperature-activity relationship of membrane preparations of (Na+ + K+)-ATPase gives rise to discontinuities in Arrhenius plots of this enzyme. The different apparent energies of activation of (Na+ + K+) — ATPase which are observed above and below the critical temperature of the system have been considered to result from different conformational forms of the enzyme protein. Because both activation of (Na+ + K+)-ATPase by cations, and its specific inhibition by cardiac glycosides may be influenced by the conformational form of the enzyme protein, we have reexamined the effect of temperature upon the activation energy of the system under the different experimental conditions of cation activation and ouabain inhibition.Our results indicate that the activation of (Na+ + K+)-ATPase by cations, is less influenced by change in temperature than is inhibition of the enzyme by ouabain. In addition, mild lipolysis by phospholipase-A had a marked effect upon the ouabain-dependent response of the enzyme to temperature, but not upon the cation-dependent response. The effect of phospholipase-A can be overcome by reincubation of the treated preparation with phosphatidyl serine.We conclude that the ouabain-dependent temperature effects of (Na+ + K+)-ATPase are more dependent upon the integrity and nature of the membrane lipids than are the cation-dependent responses. It is possible that phosphatidyl serine plays a unique role in this regard.  相似文献   

15.
Deficiency of 3-methylcrotonyl-CoA carboxylase activity is an inherited metabolic disease biochemically characterized by accumulation and high urinary excretion of 3-methylcrotonylglycine (3MCG), and also of 3-hydroisovalerate in lesser amounts. Affected patients usually have neurologic dysfunction, brain abnormalities and cardiomyopathy, whose pathogenesis is still unknown. The present study investigated the in vitro effects of 3MCG on important parameters of energy metabolism, including CO2 production from labeled acetate, enzyme activities of the citric acid cycle, as well as of the respiratory chain complexes I–IV (oxidative phosphorylation), creatine kinase (intracellular ATP transfer), and synaptic Na+,K+-ATPase (neurotransmission) in brain cortex of young rats. 3MCG significantly reduced CO2 production, implying that this compound compromises citric acid cycle activity. Furthermore, 3MCG diminished the activities of complex II-III of the respiratory chain, mitochondrial creatine kinase and synaptic membrane Na+,K+-ATPase. Furthermore, antioxidants were able to attenuate or fully prevent the inhibitory effect of 3MCG on creatine kinase and synaptic membrane Na+,K+-ATPase activities. We also observed that lipid peroxidation was elicited by 3MCG, suggesting the involvement of free radicals on 3MCG-induced effects. Considering the importance of the citric acid cycle and the electron flow through the respiratory chain for brain energy production, creatine kinase for intracellular energy transfer, and Na+,K+-ATPase for the maintenance of the cell membrane potential, the present data indicate that 3MCG potentially impairs mitochondrial brain energy homeostasis and neurotransmission. It is presumed that these pathomechanisms may be involved in the neurological damage found in patients affected by 3-methylcrotonyl-CoA carboxylase deficiency.  相似文献   

16.
The effect of thiamine deficiency on energy-requiring processes in brain tissue was studied by comparing cortical slices prepared from control and pyrithiamine-treated rats. Veratridine was used to stimulate energy metabolism by opening voltage-sensitive sodium channels resulting in enchanced Na+/K+ pumping; subsequent tetrodotoxin addition closed the sodium channels. Pyrithiamine-treated slices showed both lower basal and veratridine-stimulated respiration rates compared to control slices. K+ was released from the tissue upon addition of veratridine and was taken up again upon addition of tetrodotoxin. The movement of K+ was monitored directly with a K+-sensitive electrode as well as by measuring the rubidium diffusion potential. There was no difference between control and pyrithiamine-treated slices in K+ fluxes in response to veratridine and tetrodotoxin. The extent of reuptake of K+ upon tetrodotoxin addition was inversely related to the extracellular Ca2+ concentration and to the incubation temperature. Veratridine resulted in a marked decrease in tissue levels of ATP and creatine phosphate; these levels remained quite low upon tetrodotoxin addition. Despite the different respiration rates, control and pyrithiamine-treated slices showed the same ATP and creatine phosphate levels in response to veratridine and tetrodotoxin.  相似文献   

17.
The main focus of this investigation is steady state kinetics of regulation of mitochondrial respiration in permeabilized cardiomyocytes in situ. Complete kinetic analysis of the regulation of respiration by mitochondrial creatine kinase was performed in the presence of pyruvate kinase and phosphoenolpyruvate to simulate interaction of mitochondria with glycolytic enzymes. Such a system analysis revealed striking differences in kinetic behaviour of the MtCK-activated mitochondrial respiration in situ and in vitro. Apparent dissociation constants of MgATP from its binary and ternary complexes with MtCK, Kia and Ka (1.94 ± 0.86 mM and 2.04 ± 0.14 mM, correspondingly) were increased by several orders of magnitude in situ in comparison with same constants in vitro (0.44 ± 0.08 mM and 0.016 ± 0.01 mM, respectively). Apparent dissociation constants of creatine, Kib and Kb (2.12 ± 0.21 mM 2.17 ± 0.40 Mm, correspondingly) were significantly decreased in situ in comparison with in vitro mitochondria (28 ± 7 mM and 5 ± 1.2 mM, respectively). Dissociation constant for phosphocreatine was not changed. These data may indicate selective restriction of metabolites' diffusion at the level of mitochondrial outer membrane. It is concluded that mechanisms of the regulation of respiration and energy fluxes in vivo are system level properties which depend on intracellular interactions of mitochondria with cytoskeleton, intracellular MgATPases and cytoplasmic glycolytic system.  相似文献   

18.
Permeabilized germlings from the dimorphic fungus Mucor rouxii were used for in situ measurement of protein kinase A (PKA) activation, to compare the results with those obtained in vitro at low or high (nonlinear) enzyme concentrations. The apparent total activity per cell when measured in situ is 5- to 10-fold lower than the in vitro measured activity in crude extracts from those cells. Polyamines and NaCl stimulate the activity in situ. The apparent relative specific activity of the in situ measured PKA toward four peptide substrates is similar to the results obtained in vitro at high holoenzyme concentration and not to those obtained with the free catalytic subunit. Saturation in the activation of PKA by cAMP in situ is attained at low concentrations (2 to 10 microM), while in vitro, at high holoenzyme concentration, no saturation was attained up to 1 mM cAMP (V. Zaremberg et al. Arch. Biochem. Biophys. 381, 74-82, 2000). Activation of PKA by site-selective cAMP analogs is assayed in situ and in vitro at two enzyme concentrations. Site B-selective cAMP analogs are good activators of PKA at low enzyme concentration in vitro but poor activators either at high enzyme concentration in vitro or in permeabilized cells. A physiological correlation with the behavior of site-selective analogs in situ is demonstrated in vivo when assaying the effect of increasing concentrations of site-selective cAMP analogs on the impairment of polarized growth of M. rouxii spores.  相似文献   

19.
A study of the distribution of pyrrolidone carboxylyl peptidase (PCP) activity among cell fractions of Streptococcus cremoris HP revealed that this enzyme is associated with a particulate fraction, which mainly consists of membrane material. This location could only be established using a gentle nonmechanical method for the disruption of spheroplasts under the conditions of which intracellular marker enzymes are released. The effect of monovalent anions and treatments, which do not destroy covalent binding, suggests an association of the enzyme with surrounding structures determined by both hydrophobic and electrostatic interactions. The activity of PCP associated with cells harvested from different growth phases and in the solubilized state was studied as a function of the temperature in the absence and in the presence of the membrane-interfering agent n-butanol. A decrease in the apparent activation energy, inherent to the solubilized enzyme, is induced in situ at a lower transition temperature. Only with logarithmic-phase cells is this transition followed (mid-logarithmic cells) or accompanied (late logarithmic cells) by a secondary decrease in the energy of activation. n-Butanol appeared to decrease the lower transition temperature of the enzyme activity in situ, and additionally it exerted an effect on the manifestation of the secondary transition. Thecorganization of membrane components, mainly the lipids.  相似文献   

20.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatine/creatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 mumol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine]/[creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号