首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An aortic aneurysm is defined as a balloon-shaped bulging of all three histologic components of the aortic vessel walls (intima, media and adventitia). This dilation results from vessel weakening owing to remodeling, i.e. due to cystic degeneration of the Tunica media (Marfan), progression of atherosclerosis or presence of a bicuspid aortic valve. The growth rate of the aortic diameter varies from patient to patient and may progress until the aneurysm ultimately ruptures. The role of hemodynamics, i.e. blood flow patterns, and shear stresses that are supposed to intensify during aneurysm growth are not yet fully understood, but thought to play a key role in the enlargement process. The aim of this study is to characterize the aortic blood flow in a silicone model of a pathological aorta with ascending aneurysm, to analyze the differences in the blood flow pattern compared to a healthy aortic model, and to single out possible blood flow characteristics measurable using phase contrast magnetic resonance imaging (MRI) that could serve as indicators for aneurysm severity. MRI simulations were performed under physiological, pulsatile flow conditions using data obtained from optical three dimensional particle tracking measurements. In comparison to the healthy geometry, elevated turbulence intensity and pressure loss are measured in the diseased aorta, which we propose as a complimentary indicator for assessing the aneurysmal severity. Our results shed a light on the interplay between the blood flow dynamics and their contribution to the pathophysiology and possible role for future risk assessment of ascending aortic aneurysms.  相似文献   

2.
《Journal of biomechanics》2014,47(16):3882-3890
Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms.  相似文献   

3.
Different material models for an idealized three-layered abdominal aorta are compared using computational techniques to study aneurysm initiation and fully developed aneurysms. The computational model includes fluid–structure interaction (FSI) between the blood vessel and the blood. In order to model aneurysm initiation, the medial region was degenerated to mimic the medial loss occurring in the inception of an aneurysm. Various cases are considered in order to understand their effects on the initiation of an abdominal aortic aneurysm. The layers of the blood vessel were modeled using either linear elastic materials or Mooney–Rivlin (otherwise known as hyperelastic) type materials. The degenerated medial region was also modeled in either linear elastic or hyperelastic-type materials and assumed to be in the shape of an arc with a thin width or a circular ring with different widths. The blood viscosity effect was also considered in the initiation mechanism. In addition, dynamic analysis of the blood vessel was performed without interaction with the blood flow by applying time-dependent pressure inside the lumen in a three-layered abdominal aorta. The stresses, strains, and displacements were compared for a healthy aorta, an initiated aneurysm and a fully developed aneurysm. The study shows that the material modeling of the vessel has a sizable effect on aneurysm initiation and fully developed aneurysms. Different material modeling of degeneration regions also affects the stress–strain response of aneurysm initiation. Additionally, the structural analysis without considering FSI (called noFSI) overestimates the peak von Mises stress by 52% at the interfaces of the layers.  相似文献   

4.
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.  相似文献   

5.
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.  相似文献   

6.
Aortic arch aneurysm is a complex pathology which requires coverage of one or more aortic arch vessels. In this study we explore the hemodynamic behavior of the aortic arch in aneurysmatic and treated cases with three currently available treatment approaches: Surgery Graft, hybrid Stent-Graft and chimney Stent Graft. The analysis included four models of the time-dependent fluid domains of aneurysmatic arch and of the surgery, hybrid and chimney endovascular techniques. Dimensions of the models are based on typical anatomy, and boundary conditions are based on typical physiological flow.The simulations used computational fluid dynamics (CFD) methods to delineate the time-dependent flow dynamics in the four geometric models.Results of velocity vectors, flow patterns, blood pressure and wall shear stress distributions are presented.The results delineate disturbed and recirculating flow in the aortic arch aneurysm accompanied with low wall shear stress and velocities, compared to a uniformly directed flow and nominal wall shear stress (WSS) in the model of Surgery graft. Out of the two endograft procedures, the hybrid procedure clearly exhibits better hemodynamic performances over the chimney model, with lower WSS, lower pressure drop and less disturbed and vortical flow regions. Although the chimney procedure requires less manufacturing time and cost, it is associated with higher risk rates, and therefore, it is recommended only for emergency cases. This study may shed light on the hemodynamic factors for these complications and provide insight into ways to improve the procedure.  相似文献   

7.
A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure. To address the issue of experimentally validating these calculated deformations, a stereoscopic imaging system utilizing two cameras was constructed to measure model aneurysm displacement in response to pressurization. The three model shapes, consisting of a healthy aorta, an AAA with bifurcation, and an AAA without bifurcation, were also evaluated with computational solid mechanical modeling using finite elements to assess the impact of differences between material properties and for comparison against the experimental inflations. The device demonstrated adequate accuracy (surface points were located to within 0.07?mm) for capturing local variation while allowing the full length of the aneurysm sac to be observed at once. The experimental model AAA demonstrated realistic aneurysm behavior by having cyclic strains consistent with reported clinical observations between pressures 80 and 120?mm Hg. These strains are 1-2%, and the local spatial variations in experimental strain were less than predicted by the computational models. The three different models demonstrated that the asymmetric bifurcation creates displacement differences but not cyclic strain differences within the aneurysm sac. The technique and device captured regional variations of strain that are unobservable with diameter measures alone. It also allowed the calculation of local strain and removed rigid body motion effects on the strain calculation. The results of the computations show that an asymmetric aortic bifurcation created displacement differences but not cyclic strain differences within the aneurysm sac.  相似文献   

8.
Near-wall mass transport plays an important role in many cardiovascular processes, including the initiation of atherosclerosis, endothelial cell vasoregulation, and thrombogenesis. These problems are characterized by large Péclet and Schmidt numbers as well as a wide range of spatial and temporal scales, all of which impose computational difficulties. In this work, we develop an analytical relationship between the flow field and near-wall mass transport for high-Schmidt-number flows. This allows for the development of a wall-shear-stress-driven transport equation that lies on a codimension-one vessel-wall surface, significantly reducing computational cost in solving the transport problem. Separate versions of this equation are developed for the reaction-rate-limited and transport-limited cases, and numerical results in an idealized abdominal aortic aneurysm are compared to those obtained by solving the full transport equations over the entire domain. The reaction-rate-limited model matches the expected results well. The transport-limited model is accurate in the developed flow regions, but overpredicts wall flux at entry regions and reattachment points in the flow.  相似文献   

9.
Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.  相似文献   

10.
Thoracic endovascular aortic repair (TEVAR) has been introduced as a less invasive approach to the treatment of thoracic aortic aneurysm (TAA). However, the effectiveness of TEVAR in the treatment of TAA is often limited due to the complex anatomy of aortic arch. Flow preservation at the three supra-aortic branches further increases the overall technical difficulty. This study proposes a novel stent graft design with slit perforations that can positively alter the hemodynamics at the aortic arch while maintaining blood flow to supra-aortic branches. We carried out a computational fluid dynamic (CFD) analysis to evaluate flow characteristics near stented aortic arch in simplified TAA models, followed by in-vitro experiments using particle image velocimetry (PIV) in a mock circulatory loop. The hemodynamics result was studied in terms of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), and endothelial cell action potential (ECAP). The results showed that the stent graft with slit perforations can reduce the disturbed flow region considerably. Furthermore, the effect of the slits on flow preservation to the supra-aortic branches was simulated and compared with experimental results. The effectiveness of the stent graft with slit perforations in preserving flow to the branches was demonstrated by both simulated and experimental results. Low TAWSS and elevated ECAP were observed in the aortic arch aneurysm after the placement of the stent graft with slits, implying the potential of thrombus formation in the aneurysm. On the other hand, the effects of the stent grafts with full-slit design and half-slit design on the shear stress did not differ significantly. The present analysis indicated that not only could the stent graft with slit perforations shield the aneurysm from rupture, but also it resulted in a favorable environment for thrombus that can contribute to the shrinkage of the aneurysm.  相似文献   

11.
The purpose of this study was to introduce and validate a new algorithm to estimate instantaneous aortic blood flow (ABF) by mathematical analysis of arterial blood pressure (ABP) waveforms. The algorithm is based on an autoregressive with exogenous input (ARX) model. We applied this algorithm to diastolic ABP waveforms to estimate the autoregressive model coefficients by requiring the estimated diastolic flow to be zero. The algorithm incorporating the coefficients was then applied to the entire ABP signal to estimate ABF. The algorithm was applied to six Yorkshire swine data sets over a wide range of physiological conditions for validation. Quantitative measures of waveform shape (standard deviation, skewness, and kurtosis), as well as stroke volume and cardiac output from the estimated ABF, were computed. Values of these measures were compared with those obtained from ABF waveforms recorded using a Transonic aortic flow probe placed around the aortic root. The estimation errors were compared with those obtained using a windkessel model. The ARX model algorithm achieved significantly lower errors in the waveform measures, stroke volume, and cardiac output than those obtained using the windkessel model (P < 0.05).  相似文献   

12.
A mathematical approach of blood flow within an abdominal aortic aneurysm (AAA) with intraluminal thrombus (ILT) is presented. The macroscale formation of ILT is modeled as a growing porous medium with variable porosity and permeability according to values proposed in the literature. The model outlines the effect of a porous ILT on blood flow in AAAs. The numerical solution is obtained by employing a structured computational mesh of an idealized fusiform AAA geometry and applying the Galerkin weighted residual method in generalized curvilinear coordinates. Results on velocity and pressure fields of independent cases with and without ILT are presented and discussed. The vortices that develop within the aneurysmal cavity are studied and visualized as ILT becomes more condensed. From a mechanistic point of view, the reduction of bulge pressure, as ILT is thickening, supports the observation that ILT could protect the AAA from a possible rupture. The model also predicts a relocation of the maximum pressure region toward the zone proximal to the neck of the aneurysm. However, other mechanisms, such as the gradual wall weakening that usually accompany AAA and ILT formation, which are not included in this study, may offset this effect.  相似文献   

13.

We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.

  相似文献   

14.
Self-healing phenomenon was found in the periarterial elastase-induced abdominal aortic aneurysm (AAA) in rabbit. This kind of aneurysm model does not progress and heals spontaneously in the long term, which is quite different from the performance of AAA disease in human. In order to better mimic human AAA and overcome this shortcoming of traditional AAA model in rabbit, we studied the pathogenesis of cerebral aneurysm (CA) model in small animal, which shows an excellent long-term patency and progressive enlargement. We found that hemodynamic conditions, such as turbulence flow, high blood flow, and shear stress, play an important role in the formation and progression of CA. So, we hypothesize that hemodynamic change may also play an essential role in the initiation and progression of rabbit AAA, and self-healing will be overcome if hemodynamic condition changes by coarctation of infra-renal aorta after elastase incubation.  相似文献   

15.
Flow stagnation and residence time (RT) are important features of diseased arterial flows that influence biochemical transport processes and thrombosis. RT calculation methods are classified into Eulerian and Lagrangian approaches where several measures have been proposed to quantify RT. Each of these methods has a different definition of RT, and it is not clear how they are related. In this study, image-based computational models of blood flow in an abdominal aortic aneurysm and a cerebral aneurysm were considered and RT was calculated using different methods. In the Lagrangian methods, discrete particle tracking of massless tracers was used to calculate particle residence time and mean exposure time. In the Eulerian methods, continuum transport models were used to quantify RT using Eulerian RT and virtual ink approaches. Point-wise RT and Eulerian indicator RT were also computed based on measures derived from velocity. A comparison of these methods is presented and the implications of each method are discussed. Our results highlight that most RT methods have a conceptually distinct definition of RT and therefore should be utilized depending on the specific application of interest.  相似文献   

16.
An experimental study was carried out on asymmetrical abdominal aortic aneurysm (AAA) to analyse the physiological flows involved. Velocity measurements were performed using particle image velocimetry. Resting and exercise flow rates were investigated in models with rigid and compliant walls to assess the parameters affecting the flow behaviour. The secondary flow patterns, and especially the evolution of the vortices within the AAA, were found to be highly dependent on both the flow waveforms and the wall behaviour. Vortices impacts on the distal walls of the AAA occur in the compliant model and can increase the local pressure on the AAA walls and thus increase the wall stresses; AAA wall stresses are one of the most important factors contributing to ruptured aneurysm.  相似文献   

17.
《Journal of biomechanics》2014,47(14):3524-3530
To investigate the hemodynamic performance of overlapping bare-metal stents intervention treatment to thoracic aortic aneurysms (TAA), three simplified TAA models, representing, no stent, with a single stent and 2 overlapped stents deployed in the aneurismal sac, were studied and compared in terms of flow velocity, wall shear stress (WSS) and pressure distributions by means of computational fluid dynamics. The results showed that overlapping stents intervention induced a flow field of slow velocity near the aneurismal wall. Single stent deployment in the sac reduced the jet-like flow formed prior to the proximal neck of the aneurysm, which impinged on the internal wall of the aneurysm. This jet-like flow vanished completely in the overlapping double stents case. Overlapping stents intervention led to an evident decrease in WSS; meanwhile, the pressure acting on the wall of the aneurysm was reduced slightly and presented more uniform distribution. The results therefore indicated that overlapping stents intervention may effectively isolate the thoracic aortic aneurysm, protecting it from rupture. In conclusion, overlapping bare-metal stents may serve a purpose similar to that of the multilayer aneurysm repair system (MARS) manufactured by Cardiatis SA (Isnes, Belgium).  相似文献   

18.
Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm.  相似文献   

19.
腹主动脉旁瘤超声多普勒血流信号的仿真研究,可以为采用超声多普勒技术检测腹主动脉旁瘤的形成、生长过程和估计动脉旁瘤瘤体大小提供指导。先通过有限元数值计算方法得到稳恒流下腹主动脉旁瘤区域内的血液流场分布,然后采用余弦叠加的合成方法仿真出相应的超声多普勒血流信号,最后对仿真信号进行频谱分析,计算其平均频率,并研究它与腹主动脉旁瘤瘤体大小的关系。结果表明:当动脉旁瘤较小时,平均频率的幅度变化较小;当动脉旁瘤较大时,平均频率的幅度变化较大。因此,采用平均频率的幅度变化可以在一定程度上估计动脉旁瘤的瘤体大小。  相似文献   

20.
To reveal how the matching models of the left ventricle and its afterload affect the pressure and flow in the aortic root, the differences between the measured pressure and flow waveforms and those determined by three kinds of matching model were compared. The results showed that, compared with the results by both matching models 1 and 2, the pressure and flow waveforms determined by matching model 3 established in this work were in the closest agreement with the corresponding experimental waveforms, therefore indicating that matching model 3 was a matching model that closely and rationally characterized the match between the left ventricle and the systemic artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号