首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of varying concentrations of oxalate to isolated chicken hepatocytes reduced gluconeogenesis from lactate in a manner indicating that pyruvate carboxylase was not the rate-limiting step. With hepatocytes from biotin-deficient chicks, sensitivity to inhibition was increased, and was consistent with pyruvate carboxylase being rate-limiting. Administration of biotin to deficient chicks overnight restores sensitivity to oxalate to normal.  相似文献   

2.
In isolated hepatocytes, dichloroacetate decreased glucose synthesis from lactate, pyruvate and alanine, but not from substrates which bypass pyruvate carboxylase (propionate, glycerol). It was also found to inhibit pyruvate carboxylation in isolated mitochondria, but only after a preincubation period, and had no effect on partially purified pyruvate carboxylase. Hepatocytes and liver mitochondria metabolized [14C] dichloroacetate to oxalate which inhibits pyruvate carboxylase and mimics, without preincubation, the effects of dichloroacetate in mitochondrial pyruvate carboxylation. Thus, oxalate appears to be responsible for the inhibition of gluconeogenesis by dichloroacetate at the level of pyruvate carboxylation.  相似文献   

3.
Cloning of yeast glycolysis genes by complementation   总被引:19,自引:0,他引:19  
In hepatocytes isolated from fed rats, low concentrations of oxalate (50 to 100 μM) greatly enhance ketogenesis and decrease fatty acid synthesis. These metabolic changes are due to pyruvate carboxylase inhibition. Dichloroacetate, which can be catabolized into oxalate enhances ketogenesis only when cells are enriched with lactate and pyruvate and has no obvious effect on lipogenesis. The enhancement of ketogenesis, in both cases, is due to an imbalance between pyruvate dehydrogenase and pyruvate carboxylase but with oxalate, the primary event is oxaloacetate shortage and with dichloroacetate, mitochondrial acetyl CoA excess. This work demonstrates that the studied effects of dichloroacetate are not mediated by oxalate and that low concentrations of oxalate alter the lipid metabolism of hepatocytes.  相似文献   

4.
In hepatocytes isolated from fed rats, physiological concentrations of oxalate lower the flux through the tricarboxylic acid cycle (-48%) and reduce the steady-state levels of oxaloacetate and other Krebs cycle intermediates. All the metabolic modifications observed are explained by pyruvate carboxylase inhibition, since oxalate hardly modifies the flux through pyruvate dehydrogenase.  相似文献   

5.
In isolated hepatocytes, dichloroacetate directly activates pyruvate dehydrogenase whereas its biotransformation product, oxalate, inhibits pyruvate carboxylase and pyruvate kinase. Dichloroacetate, which decreases blood lactate very efficiently, has been sucessfully tested in the acute treatment of congenital lactic acidosis, but its transformation into oxalate and potential chronic toxicity prompt to replace it by 2-chloropropionate as a therapeutic agent.  相似文献   

6.
Dichloroacetate, an activator of the pyruvate dehydrogenase complex, is known to lower blood glucose, lactate, pyruvate, and alanine when given to diabetic and 24 h fasted rats. Under certain conditions, especially when pyruvate carboxylase is made rate limiting for want of bicarbonate, dichloroacetate effectively inhibits glucose synthesis from lactate by isolated hepatocytes. 2-Chloropropionate also activates the pyruvate dehydrogenase complex, lowers blood glucose, lactate, and pyruvate in 24 h fasted rats, but stimulates gluconeogenesis from lactate or alanine by isolated hepatocytes. Dichloroacetate is catabolized to glyoxylate and thence to oxalate by liver cells, whereas 2-chloropropionate cannot be catabolized to these products. Glyoxylate and oxalate are potent inhibitors of glucose synthesis from lactate, pyruvate, and alanine, but not from dihydroxyacetone. Inhibition is much more pronounced in a bicarbonate-deficient medium, in which pyruvate carboxylase is probably rate limiting for gluconeogenesis. It seems likely, therefore, that the inhibition of lactate gluconeogenesis by dichloroacetate is actually caused by oxalate, which inhibits pyruvate carboxylation. Nevertheless, the major effect of dichloroacetate, and probably the sole effect of 2-chloropropionate, on blood glucose concentration is to limit substrate availability in the blood for hepatic gluconeogenesis. Since oxalic acid stone formation and renal dysfunction may prove to be side effects of any therapeutic application of dichloroacetate, we suggest that further studies on the treatment of hyperglycemia and lactic acidosis with pyruvate dehydrogenase activators be carried out with 2-chloropropionate rather than dichloroacetate.  相似文献   

7.
Oxalate was shown to enter isolated rat hepatocytes and to inhibit gluconeogenesis from lactate, pyruvate, and alanine, but not from glutamine, proline, propionate or dihydroxyacetone. Oxalate apparently acts by inhibiting pyruvate carboxylase (EC 6.4.1.1). It is known to inhibit the isolated enzyme, and inhibition of gluconeogenesis was much greater in a bicarbonate-deficient medium where pyruvate carboxylase activity limits the overall rate of the pathway. A slight inhibition of gluconeogenesis from asparagine was observed, suggesting that oxalate may also inhibit gluconeogenesis at another site. Chelation of extracellular Ca2+ does not contribute to the inhibition of gluconeogenesis. Compared to oxalate, other Ca2+ chelators have little effect upon gluconeogenesis. Also, oxalate inhibits gluconeogenesis effectively both in low Ca2+ medium and in medium containing 2.6 mM Ca2+. Chelation of intracellular Ca2+ also appears to be of little importance, since oxalate does not block the glycogenolytic effects of epinephrine, vasopressin, and angiotensin which are thought to act via Ca2+ as the second messenger. The inhibition of gluconeogenesis could conceivably contribute to the toxic actions of oxalate and to the hypoglycemic action of dichloroacetate, a compound that is metabolized to oxalate. However, oxalate did not cause hypoglycemia in the suckling rat, a model in vivo system very dependent upon gluconeogenesis for maintenance of normal blood glucose levels. Thus, inhibition of gluconeogenesis is probably of little importance in oxalate toxicity and the hypoglycemic effects of dichloroacetate.  相似文献   

8.
Liver slices from chicks affected by the fatty liver and kidney syndrome display an extremely low extent of hepatic gluconeogenesis which is associated with decreased activities of certain rate-limiting gluconeogenic enzymes. Pyruvate carboxylase activity is particularly severely affected, being less than 4% of control values. Incubation of affected slices in a biotin-containing nutrient medium restores both gluconeogenesis and pyruvate carboxylase actiivity (the latter to approx. 35% of the control valve). Activities of the other enzymes studied were not greatly affected by this treatment. Restoration of gluconeogenesis did not occur if biotin was excluded from the nutrient medium, nor was it prevented by protein-synthesis inhibitors. It is concluded that the syndrome involves the lack of available biotin in the liver rather than suppression of apocarboxylase synthesis.  相似文献   

9.
1. In isolated rat hepatocytes incubated with pyruvate, ketogenesis increased with increasing pyruvate concentrations and decreased under the influence of 1 mM-alpha-cyano-4-hydroxycinnamate, a known inhibitor of pyruvate transport. Ketogenesis from pyruvate was higher by 30% in hepatocytes prepared from starved than from fed rats. 2. With pyruvate as substrate, 2 mM-dichloroacetate had no effect on ketogenesis of starved-rat hepatocytes, but increased ketogenesis of fed-rat hepatocytes to the 'starved' value. Gluconeogenesis from pyruvate, lactate and alanine, but not from glycerol, was inhibited by dichloroacetate. Both increased ketogenesis and decreased gluconeogenesis may result from an inhibition of pyruvate carboxylase by dichloroacetate. 3. Mitochondria were rapidly isolated from incubated hepatocytes, and [3-hydroxybutyrate]/[3-oxobutyrate] ratios were measured in the mitochondrial pellet ('mitochondrial' ratios) and in whole-cell suspensions ('total' ratios). Increasing pyruvate concentrations increased mitochondrial and decreased total ratios. In the presence of pyruvate (2 to 10 mM), dichloroacetate decreased mitochondrial and increased total ratios.  相似文献   

10.
The metabolism of hydroxypyruvate to oxalate was studied in isolated rat hepatocytes. [14C]Oxalate was produced from [2-14C]- and [3-14C]- but not [1-14C]hydroxypyruvate. No oxalate was produced from similarly labeled pyruvate. The mechanism by which hydroxypyruvate is metabolized to oxalate involves decarboxylation at the carbon 1 position as the initial step. This activity was distinct from that which produced CO2 from the carbon 1 position of pyruvate. Hydroxypyruvate decarboxylase activity was found mainly in the mitochondria, with the remainder (25%) in the cytosol. No activity was present in the peroxisomes, the probable site of oxalate production from glycolate and glyoxylate. Hydroxypyruvate, but not pyruvate stimulated [14C]oxalate production from [U-14C]fructose, suggesting that hydroxypyruvate is either an intermediate in the fructose-oxalate pathway, or that it prevents carbon from leaving that pathway. The lack of effect of pyruvate in this regard is evidence against redox being the primary effect of hydroxypyruvate and focuses attention on hydroxypyruvate and its precursors as important sources of carbon for oxalate synthesis from both carbohydrate and protein.  相似文献   

11.
The regulation of flux through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) by fatty acids and glucagon was studied in situ, in intact hepatocyte suspensions. The rate of pyruvate metabolized by carboxylation plus decarboxylation was determined from the incorporation of [1-14C]pyruvate into 14CO2 plus [14C]glucose. The flux through PDH was determined from the rate of formation of 14CO2 from [1-14C]pyruvate corrected for other decarboxylation reactions (citrate cycle, phosphoenolpyruvate carboxykinase and malic enzyme), and the flux through PC was determined by subtracting the flux through PDH from the total pyruvate metabolized. With 0.5 mM pyruvate as substrate the ratio of flux through PDH/PC was 1.9 in hepatocytes from fed rats and 1.4 in hepatocytes from 24 h-starved rats. In hepatocytes from fed rats, octanoate (0.8 mM) and palmitate (0.5 mM) increased the flux through PDH (59-76%) and PC (80-83%) without altering the PDH/PC flux ratios. Glucagon did not affect the flux through PDH but it increased the flux through PC twofold, thereby decreasing the PDH/PC flux ratio to the value of hepatocytes from starved rats. In hepatocytes from starved rats, fatty acids had similar effects on pyruvate metabolism as in hepatocytes from fed rats, however glucagon did not increase the flux through PC. 2[5(4-Chlorophenyl)pentyl]oxirane-2-carboxylate (100 microM) an inhibitor of carnitine palmitoyl transferase I, reversed the palmitate-stimulated but not the octanoate-stimulated flux through PDH, in cells from fed rats, indicating that the effects of fatty acids on PDH are secondary to the beta-oxidation of fatty acids. This inhibitor also reversed the stimulatory effect of palmitate on PC and partially inhibited the flux through PC in the presence of octanoate suggesting an effect of POCA independent of fatty acid oxidation. It is concluded that the effects of fatty acids on pyruvate metabolism are probably secondary to increased pyruvate uptake by mitochondria in exchange for acetoacetate. Glucagon favours the partitioning of pyruvate towards carboxylation, by increasing the flux through pyruvate carboxylase, without directly inhibiting the flux through PDH.  相似文献   

12.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

13.
The effect of acute insulin treatment of hepatocytes on pyruvate carboxylation in both isolated mitochondria and cells rendered permeable by filipin was examined. Challenging the cells with insulin alone had no effect on either the basal rate of pyruvate carboxylation or gluconeogenesis, although it did suppress the responses to both glucagon and catecholamines. Insulin treatment was unable to antagonize the enhanced rate of pyruvate carboxylation caused by stimulation of the cells with either angiotensin or vasopressin. Neither insulin nor the gluconeogenic hormones altered the total extractable pyruvate carboxylase activity in the isolated mitochondria, suggesting that the effect of hormones at the level of the isolated intact organelle was mediated via alterations in the intramitochondrial concentrations of effector molecules, notably ATP and the [ATP]/[ADP] ratio and substrate availability. The alterations in pyruvate carboxylation correlate well with glucose synthesis in terms of sensitivity to effector molecules, putative second messengers and time of onset of the response, indicating that alterations in the flux through this enzyme are compatible with it being an important site in the control of gluconeogenesis from C3 precursors.  相似文献   

14.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

15.
A kinetic investigation of phosphoenolpyruvate carboxylase from Zea mays.   总被引:1,自引:0,他引:1  
J W Janc  M H O'Leary  W W Cleland 《Biochemistry》1992,31(28):6421-6426
The reaction catalyzed by phosphoenolpyruvate carboxylase from Zea mays has been studied kinetically. Results of initial velocity patterns and inhibition studies indicate that phosphoenolpyruvate carboxylase has a random sequential mechanism in which there is a high level of synergism in the binding of substrates. The preferred order of addition of reactants is Mg2+, phosphoenolpyruvate, and bicarbonate. The binding of Mg2+ is at equilibrium. Values for the various kinetic parameters are KiMg = 2.3 +/- 0.4 mM, KPEP = 3.6 +/- 0.6 mM, KiPEP = 0.2 +/- 0.07 mM, and Kbicarbonate = 0.18 +/- 0.04 mM. In addition, double inhibition experiments have been performed to examine the nature of the active site interactions with the putative intermediates, carboxy phosphate and the enolate of pyruvate. Highly synergistic inhibition of phosphoenolpyruvate carboxylase was observed in the presence of oxalate and carbamyl phosphate (alpha = 0.0013). However, an antisynergistic relationship exists between oxalate and phosphonoformate (alpha = 2.75).  相似文献   

16.
Abstract: CO2 fixation was measured in cultured astrocytes isolated from neonatal rat brain to test the hypothesis that the activity of pyruvate carboxylase influences the rate of de novo glutamate and glutamine synthesis in astrocytes. Astrocytes were incubated with 14CO2 and the incorporation of 14C into medium or cell extract products was determined. After chromatographic separation of 14C-labelled products, the fractions of 14C cycled back to pyruvate, incorporated into citric acid cycle intermediates, and converted to the amino acids glutamate and glutamine were determined as a function of increasing pyruvate carboxylase flux. The consequences of increasing pyruvate, bicarbonate, and ammonia were investigated. Increasing extracellular pyruvate from 0 to 5 mM increased pyruvate carboxylase flux as observed by increases in the 14C incorporated into pyruvate and citric acid cycle intermediates, but incorporation into glutamate and glutamine, although relatively high at low pyruvate levels, did not increase as pyruvate carboxylase flux increased. Increasing added bicarbonate from 15 to 25 mM almost doubled CO2 fixation. When 25 mM bicarbonate plus 0.5 mM pyruvate increased pyruvate carboxylase flux to approximately the same extent as 15 mM bicarbonate plus 5 mM pyruvate, the rate of appearance of [14C]glutamate and glutamine was higher with the lower level of pyruvate. The conclusion was drawn that, in addition to stimulating pyruvate carboxylase, added pyruvate (but not added bicarbonate) increases alanine aminotransferase flux in the direction of glutamate utilization, thereby decreasing glutamate as pyruvate + glutamate →α-ketoglutarate + alanine. In contrast to previous in vivo studies, the addition of ammonia (0.1 and 5 mM) had no effect on net 14CO2 fixation, but did alter the distribution of 14C-labelled products by decreasing glutamate and increasing glutamine. Rather unexpectedly, ammonia did not increase the sum of glutamate plus glutamine (mass amounts or 14C incorporation). Low rates of conversion of α-[14C]ketoglutarate to [14C]glutamate, even in the presence of excess added ammonia, suggested that reductive amination of α-ketoglutarate is inactive under conditions studied in these cultured astrocytes. We conclude that pyruvate carboxylase is required for de novo synthesis of glutamate plus glutamine, but that conversion of α-ketoglutarate to glutamate may frequently be the rate-limiting step in this process of glutamate synthesis.  相似文献   

17.
The enzyme-[14C] carboxybiotin complex of sheep liver pyruvate carboxylase was isolated and the reaction between this and pyruvate was studied by using the quenched-flow rapid-reaction technique. At 0.5 degrees C the reaction was 80% complete within 180 ms. The reaction was monophasic and obeyed pseudo-first-order kinetics. Increasing concentrations of Mg2+ caused a decrease in the magnitude of the observed pseudo-first-order rate constant. Throughout the carboxylation of pyruvate, the rate-limiting step of the reaction occurred after the dissociation of carboxybiotin from the first sub-site, whereas in the slow phase of the reaction with 2-oxobutyrate this dissociation is the rate-limiting step. It is possible, from the reaction scheme proposed, that the inhibition of overall enzymic activity by high concentrations of Mg2+ could be caused by the transfer of the carboxy group from biotin to pyruvate becoming rate-limiting. The efficacy of a substrate as a signal for the movement of carboxybiotin from the first sub-site is reflected by the amount that the effective affinity of the enzyme- carboxybiotin complex for Mg2+ is lowered. In the presence of the substrates tested, the affinities of the carboxybiotin complex can be arranged in order of increasing magnitude, i.e.: (formula; see text). The kinetics of the decay of the enzyme-[14C] carboxybiotin complex at 0 degree C in the absence of substrates are similar to the reaction with pyruvate except that the carboxybiotin is also unstable in the first sub-site, to some degree. This similarity allows for the proposal of a general scheme for the decarboxylation of the enzyme- carboxybiotin complex in the presence or in the absence of substrates.  相似文献   

18.
The mechanism of inhibition of pyruvate carboxylase, pyruvate dehydrogenase, and carbamyl phosphate synthetase induced by alpha-ketoisovalerate metabolism has been investigated in isolated rat hepatocytes incubated with lactate, pyruvate, ammonia, and ornithine as substrates. Half-maximum inhibitions of flux through each of these enzyme steps were obtained with 0.3 mM alpha-ketoisovalerate. The inhibition of pyruvate carboxylase flux by alpha-ketoisovalerate was largely reversed by oleate addition, but pyruvate dehydrogenase flux was inhibited further. Inhibition of flux through pyruvate carboxylase could be attributed mainly to the fall of its allosteric activator, acetyl-CoA, with some additional effect due to inhibition by methylmalonyl-CoA. Tissue acetyl-CoA levels decrease as a result of an inhibition of the active form of pyruvate dehydrogenase. Kinetic studies with the purified pig heart pyruvate dehydrogenase complex showed that methyl-malonyl-CoA, propionyl-CoA, and isobutyryl-CoA were inhibitory, the latter noncompetitive with CoASH with an apparent Ki of 90 microM. The observed inhibition of pyruvate dehydrogenase flux correlated with increases of the acetyl-CoA/CoASH and propionyl-CoA/CoASH ratios and isobutyryl-CoA levels, while increases of the mitochondrial NADH/NAD+ ratio explained differences between the effects of alpha-ketoisovalerate and propionate. Carbamyl phosphate synthetase I purified from rat liver was shown to be inhibited directly by methylmalonyl-CoA (apparent Ki of 5 mM). Inhibition of flux through carbamyl phosphate synthetase during alpha-ketoisovalerate metabolism could be attributed both to a direct inhibitory effect of methyl-malonyl-CoA and to a diminished activation by N-acetylglutamate. Direct effects of various acyl-CoA metabolites on these key enzymes may explain symptoms of hypoglycemia and hyperammonemia observed in patients with inherited disorders of organic acid metabolism.  相似文献   

19.
1. An assay method for the determination of phosphopyruvate carboxylase activity is described in which improved sensitivity is obtained by separation of the enzyme from interfering pyruvate kinase by zone sedimentation. 2. The molecular weight of rat liver phosphopyruvate carboxylase determined by zone sedimentation is about 68000. 3. Premature delivery of rat foetuses by uterine section results in the rapid appearance of phosphopyruvate carboxylase, but hexose diphosphatase and pyruvate carboxylase, already present in the foetal rat liver, are not significantly affected, and glucose 6-phosphatase activity is only slightly affected. 4. The rate of incorporation of [14C]pyruvate into glucose by liver slices is also greatly increased by premature delivery and there is a highly significant linear correlation between this process and the phosphopyruvate carboxylase activity.  相似文献   

20.
Inhibition of CA V decreases glucose synthesis from pyruvate   总被引:1,自引:0,他引:1  
The carbonic anhydrase inhibitor acetazolamide reduces citrulline synthesis by intact guinea pig liver mitochondria and also inhibits mitochondrial carbonic anhydrase (CA V) and the more lipophilic carbonic anhydrase inhibitor ethoxzolamide reduces urea synthesis by intact guinea pig hepatocytes in parallel with its inhibition of total hepatocytic carbonic anhydrase activity. Intact hepatocytes from 48-h starved male guinea pig livers were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 5 mM pyruvate, 5 mM lactate, 3 mM ornithine, 10 mM NH4Cl, 1 mM oleate; with these inclusions both urea and glucose synthesis start with HCO3- -requiring enzymes, carbamyl phosphate synthetase I and pyruvate carboxylase, respectively. Urea and glucose synthesis were inhibited in parallel by increasing concentrations of ethoxzolamide, estimated Ki for each approximately 0.1 mM. In other experiments hepatocytes were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 10 mM glutamine, 1 mM oleate; with these inclusions glucose synthesis no longer starts with a HCO3- -requiring enzyme. Urea synthesis was inhibited by ethoxzolamide with an estimated Ki of 0.1 mM, but glucose synthesis was unaffected. Intact mitochondria were prepared from 48-h starved male guinea pig livers. Pyruvate carboxylase activity of intact mitochondria was determined in isotonic KCl-Hepes buffer, pH 7.4, 25 degrees C, with 7.5 mM pyruvate, 3 mM ATP, and 10 mM NaHCO3. Inclusion of ethoxzolamide resulted in reduction in the rate of pyruvate carboxylation in intact mitochondria, but not in disrupted mitochondria. It is concluded that carbonic anhydrase is functionally important for gluconeogenesis in the male guinea pig liver when there is a requirement for bicarbonate as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号