首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus \(\textit{E}_\mathrm{s}\) on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of \(\lambda =1.1\), were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and \(\textit{E}_\mathrm{s}\,=\,\)140 KPa and (2) \(\textit{E}_\mathrm{s}\,=\,10\), 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35\(\text {e}^{-2}\), 0.235\(\text {e}^{-2}\) and 0.6\(\text {e}^{-2}\)) than for FA attachment (0.0952\(\text {e}^{-2}\), 0.0472\(\text {e}^{-2}\) and 0.05\(\text {e}^{-2}\)). For increasing \(\textit{E}_\mathrm{s}\), the largest maximum principal strain was 4.4\(\text {e}^{-4}\), 5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\) and 5.3\(\text {e}^{-4}\) in the membrane, 9.5\(\text {e}^{-4}\), 1.1\(\text {e}^{-4}\), 1.2\(\text {e}^{-3}\) and 1.2\(\text {e}^{-3}\) in the cytosol, and 4.5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\), 5.7\(\text {e}^{-4}\) and 5.7\(\text {e}^{-4}\) in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.  相似文献   

2.
Micro-finite element (\(\upmu \)FE) analyses are often used to determine the apparent mechanical properties of trabecular bone volumes. Yet, these apparent properties depend strongly on the applied boundary conditions (BCs) for the limited size of volumes that can be obtained from human bones. To attenuate the influence of the BCs, we computed the yield properties of samples loaded via a surrounding layer of trabecular bone (“embedded configuration”). Thirteen cubic volumes (10.6 mm side length) were collected from \(\upmu \)CT reconstructions of human vertebrae and femora and converted into \(\upmu \)FE models. An isotropic elasto-plastic material model was chosen for bone tissue, and nonlinear \(\upmu \)FE analyses of six uniaxial, shear, and multi-axial load cases were simulated to determine the yield properties of a subregion (5.3 mm side length) of each volume. Three BCs were tested. Kinematic uniform BCs (KUBCs: each boundary node is constrained with uniform displacements) and periodicity-compatible mixed uniform BCs (PMUBCs: each boundary node is constrained with a uniform combination of displacements and tractions mimicking the periodic BCs for an orthotropic material) were directly applied to the subregions, while the embedded configuration was achieved by applying PMUBCs on the larger volumes instead. Yield stresses and strains, and element damage at yield were finally compared across BCs. Our findings indicate that yield strains do not depend on the BCs. However, KUBCs significantly overestimate yield stresses obtained in the embedded configuration (+43.1 ± 27.9%). PMUBCs underestimate (?10.0 ± 11.2%), but not significantly, yield stresses in the embedded situation. Similarly, KUBCs lead to higher damage levels than PMUBCs (+51.0 ± 16.9%) and embedded configurations (+48.4 ± 15.0%). PMUBCs are better suited for reproducing the loading conditions in subregions of the trabecular bone and deliver a fair estimation of their effective (asymptotic) yield properties.  相似文献   

3.
Okra’s (Abelmoschus esculentus (L.) Moench) commercial cultivation is threatened in the tropics due to high incidence of yellow vein mosaic virus (YVMV) disease. Okra geneticists across the world tried to understand the inheritance pattern of YVMV disease tolerance without much success. Therefore, the inheritance pattern of YVMV disease in okra was revisited by employing six generations (\(\hbox {P}_{1}\), \(\hbox {P}_{2}\), \(\hbox {F}_{1}\), \(\hbox {F}_{2}\), \(\hbox {BC}_{1}\) and \(\hbox {BC}_{2}\)) of four selected crosses (one tolerant \(\times \) tolerant, two tolerant \(\times \) susceptible and one susceptible \(\times \) susceptible) using two tolerant (BCO-1 and Lal Bhendi) and two susceptible (Japanese Jhar Bhendi and PAN 2127) genotypes. Qualitative genetic analysis was done on the basis of segregation pattern of tolerant and susceptible plants in \(\hbox {F}_{2}\) and backcross generations of all the four crosses. It revealed that a single dominant gene along with some minor factors governed the disease tolerant trait in both the tolerant parents used. However, it was observed that genes governing disease tolerance identified in both the tolerant variety used was different. It could be concluded that the gene governing YVMV disease tolerance in okra was genotype specific. Further, duplicate gene action as evident from an approximate ratio of 15 : 1 (tolerant : susceptible) in the \(\hbox {F}_{2}\) population in the cross of two tolerant varieties gave a scope of increasing the tolerance level of the hybrid plants when both the tolerant genes are brought together. However, generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease tolerance. Thus, the present study confirms that a complicated genetic inheritance pattern is involved in the disease tolerance against YVMV trait. The major tolerance genes could be transferred to other okra varieties, but the tolerance breaking virus strains might not allow them to achieve tolerance in stable condition. Therefore, accumulation of additional genes may be needed for a sustainable tolerance phenotype in okra.  相似文献   

4.
Pentatricopeptide repeat (PPR) gene family plays an essential role in the regulation of plant growth and organelle gene expression. Some PPR genes are related to fertility restoration in plant, but there is no detailed information in Gossypium. In the present study, we identified 482 and 433 PPR homologues in Gossypium raimondii (\(\hbox {D}_{5}\)) and G. arboreum (\(\hbox {A}_{2}\)) genomes, respectively. Most PPR homologues showed an even distribution on the whole chromosomes. Given an evolutionary analysis to PPR genes from G. raimondii (\(\hbox {D}_{5}\)), G. arboreum (\(\hbox {A}_{2}\)) and G. hirsutum genomes, eight PPR genes were clustered together with restoring genes of other species. Most cotton PPR genes were qualified with no intron, high proportion of \(\upalpha \)-helix and classical tertiary structure of PPR protein. Based on bioinformatics analyses, eight PPR genes were targeted in mitochondrion, encoding typical P subfamily protein with protein binding activity and organelle RNA metabolism in function. Further verified by RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, two PPR candidate genes, Gorai.005G0470 (\(\hbox {D}_{5}\)) and Cotton_A_08373 (\(\hbox {A}_{2}\)), were upregulated in fertile line than sterile line. These results reveal new insights into PPR gene evolution in Gossypium.  相似文献   

5.
The mechanical response of skin to external loads is influenced by anisotropy and viscoelasticity of the tissue, but the underlying mechanisms remain unclear. Here, we report a study of the main effects of tissue orientation (TO, which is linked to anisotropy) and strain rate (SR, a measure of viscoelasticity), as well as the interaction effects between the two factors, on the tensile properties of skin from a porcine model. Tensile testing to rupture of porcine skin tissue was conducted to evaluate the sensitivity of the tissue modulus of elasticity (E) and fracture-related properties, namely maximum stress \((\sigma _{U})\) and strain \((\varepsilon _{U})\) at \(\sigma _{U}\), to varying SR and TO. Specimens were excised from the abdominal skin in two orientations, namely parallel (P) and right angle (R) to the torso midline. Each TO was investigated at three SR levels, namely 0.007–0.015 \(\hbox {s}^{-1}\) (low), 0.040 \(\hbox {s}^{-1}\) (mid) and 0.065 \(\hbox {s}^{-1}\) (high). Two-factor analysis of variance revealed that the respective parameters responded differently to varying SR and TO. Significant changes in the \(\sigma _{U}\) were observed with different TOs but not with SR. The \(\varepsilon _{U}\) decreased significantly with increasing SR, but no significant variation was observed for different TOs. Significant changes in E were observed with different TOs; E increased significantly with increasing SR. More importantly, the respective mechanical parameters were not significantly influenced by interactions between SR and TO. These findings suggest that the trends associated with the changes in the skin mechanical properties may be attributed partly to differences in the anisotropy and viscoelasticity but not through any interaction between viscoelasticity and anisotropy.  相似文献   

6.
7.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

8.
The characteristics of the formation of the superoxide radical anion (\(\rm{O}_2^{\bullet-}\)) and hydrogen peroxide by xanthine oxidases isolated from microorganisms and from cow’s milk were investigated. The increase in pH led to an increase in the rate of xanthine oxidation with oxygen by both xanthine oxidases. The functioning of xanthine oxidase from milk along with the two-electron reduction of O2 to H2O2 carries through the one-electron reduction of O2 to \(\rm{O}_2^{\bullet-}\), and the rate and the fraction of generation of \(\rm{O}_2^{\bullet-}\) increased with increasing pH. Under operation of the microbial xanthine oxidase, the \(\rm{O}_2^{\bullet-}\) radical was not detected in the medium. The results suggest a difference in the operation of active centers of enzyme from different sources.  相似文献   

9.
Respiratory viral infections are common in the general population and one of the most important causes of asthma aggravation and exacerbation. Despite many studies, it is not well understood how viral infections cause more severe symptoms and exacerbations in asthmatics. We develop a mathematical model of two types of macrophages that play complementary roles in fighting viral infection: classically \((\hbox {CA}\)-\(\hbox {M}\Phi )\) and alternatively activated macrophages \((\hbox {AA}\)-\(\hbox {M}\Phi )\). \(\hbox {CA}\)-\(\hbox {M}\Phi \) destroy infected cells and tissues to remove viruses, while \(\hbox {AA}\)-\(\hbox {M}\Phi \) repair damaged tissues. We show that a higher viral load or longer duration of infection provokes a stronger immune response from the macrophage system. By adjusting the parameters, we model the differences in response to respiratory viral infection in normal and asthmatic subjects and show how this skews the system toward a response that generates more severe symptoms in asthmatic patients.  相似文献   

10.
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm\(^{2}\) from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm\(^{2}\) and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 \(\times \) 10\(^{4}\) tC (carbon equivalent), while those in Baixiang decreased by 0.63 \(\times \) 10\(^{4}\) tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 \(\times \) 10\(^{4}\) and 1.22 \(\times \) 10\(^{4}\) tC, respectively.  相似文献   

11.
We developed a dynamic model of a rat proximal convoluted tubule cell in order to investigate cell volume regulation mechanisms in this nephron segment. We examined whether regulatory volume decrease (RVD), which follows exposure to a hyposmotic peritubular solution, can be achieved solely via stimulation of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. We also determined whether regulatory volume increase (RVI), which follows exposure to a hyperosmotic peritubular solution under certain conditions, may be accomplished by activating basolateral \(\hbox {Na}^+\)/H\(^+\) exchangers. Model predictions were in good agreement with experimental observations in mouse proximal tubule cells assuming that a 10% increase in cell volume induces a fourfold increase in the expression of basolateral K\(^+\) and \(\hbox {Cl}^-\) channels and \(\hbox {Na}^+\)\(\hbox {HCO}_3^-\) cotransporters. Our results also suggest that in response to a hyposmotic challenge and subsequent cell swelling, \(\hbox {Na}^+\)\(\hbox {HCO}^-_3\) cotransporters are more efficient than basolateral K\(^+\) and \(\hbox {Cl}^-\) channels at lowering intracellular osmolality and reducing cell volume. Moreover, both RVD and RVI are predicted to stabilize net transcellular \(\hbox {Na}^+\) reabsorption, that is, to limit the net \(\hbox {Na}^+\) flux decrease during a hyposmotic challenge or the net \(\hbox {Na}^+\) flux increase during a hyperosmotic challenge.  相似文献   

12.
Biological denitrification typically requires the addition of a supplemental electron donor, which can add a significant operating expense to wastewater treatment facilities. Most common electron donors are organic, but reduced inorganic sulfur compounds (RISCs), such as sulfide (HS?) and elemental sulfur (S0), may be more cost-effective. S0 is an inexpensive and well characterized electron donor, but it provides slow denitrification rates due to its low solubility. A lesser-known RISC is sulfite (\({\text{SO}}_{3}^{2 - }\)), which can be easily produced from S0 by a simple combustion process. Unlike S0, \({\text{SO}}_{3}^{2 - }\) is highly soluble, and therefore may provide higher denitrification rates. However, very little is known about microbial denitrification with \({\text{SO}}_{3}^{2 - }\). Also, \({\text{SO}}_{3}^{2 - }\) is a strong reductant that reacts abiotically with oxygen and has toxic effects on microorganisms. This paper reviews \({\text{SO}}_{3}^{2 - }\) in the environment, \({\text{SO}}_{3}^{2 - }\) chemistry, microbiology, toxicity, and its potential use for denitrification. Since \({\text{SO}}_{3}^{2 - }\) is an intermediate in the sulfur oxidation pathway of most sulfur-oxidizing microorganisms, it is an energetic electron donor and it should select for a \({\text{SO}}_{3}^{2 - }\)-oxidizing community. Our review of the literature, as well as our own lab experience, suggests that \({\text{SO}}_{3}^{2 - }\) can effectively serve as an electron donor for denitrification. Further research is needed to determine the kinetics of \({\text{SO}}_{3}^{2 - }\)-based denitrification, its toxic threshold for sulfur-oxidizing microorganisms, and its potential inhibition of sensitive species such as nitrifying microorganisms and potential formation of nitrous oxide. Its effect on sludge settling efficiency also should be explored.  相似文献   

13.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

14.
We prove almost sure exponential stability for the disease-free equilibrium of a stochastic differential equations model of an SIR epidemic with vaccination. The model allows for vertical transmission. The stochastic perturbation is associated with the force of infection and is such that the total population size remains constant in time. We prove almost sure positivity of solutions. The main result concerns especially the smaller values of the diffusion parameter, and describes the stability in terms of an analogue \(\mathcal{R}_\sigma\) of the basic reproduction number \(\mathcal{R}_0\) of the underlying deterministic model, with \(\mathcal{R}_\sigma \le \mathcal{R}_0\). We prove that the disease-free equilibrium is almost sure exponentially stable if \(\mathcal{R}_\sigma <1\).  相似文献   

15.
In this paper, the \(\mathcal {H}_{\infty }\) filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov–Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed \(\mathcal {H}_{\infty }\) performance. Second, based on the above analysis, the existence of the designed \(\mathcal {H}_{\infty }\) filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.  相似文献   

16.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

17.
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number \(\mathcal {R}_0\) is calculated, and existence of a unique endemic equilibrium is established for \(\mathcal {R}_0\) above the threshold value 1. Using data from the literature, elasticity indices for \(\mathcal {R}_0\) and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if \(\mathcal {R}_0 < 1\). For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with \(\mathcal {R}_0>1\) and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.  相似文献   

18.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

19.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two \(\mathrm{Cl}^-/\mathrm{HCO}_3^-\) exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by \(\mathrm{Cl}^-\) movement. Here, a basolateral \(\mathrm{Na}^+/ \mathrm{K}^+\) adenosine triphosphatase pump (NaK-ATPase) and a \(\mathrm{Na}^+\)\(\mathrm{K}^+\)\(2 \mathrm{Cl}^-\) cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with \(\mathrm{Cl}^-\) well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of \(\mathrm{Ca}^{2+}\) ions from the internal stores of acinar cells, which triggers saliva secretion. \(\mathrm{Ca}^{2+}\)-dependent \(\mathrm{Cl}^-\) and \(\mathrm{K}^+\) channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that \(\mathrm{Cl}^-/ \mathrm{HCO}_3^-\) anion exchangers (Ae), coupled with a basolateral \(\mathrm{Na}^+/\hbox {proton}\) (\(\hbox {H}^+\)) (Nhe1) antiporter, regulate intracellular pH and act as a secondary \(\mathrm{Cl}^-\) uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823–G837, 1992; Melvin et al. in Annu Rev Physiol 67:445–469, 2005.  https://doi.org/10.1146/annurev.physiol.67.041703.084745). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate \(30\%\) decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677–10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary \(\mathrm{Cl}^-\) uptake and thus a key mechanism for saliva secretion. Here, by using ‘in-silico’ Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger’s cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.  相似文献   

20.
Identifying the best performing hybrid without a field test was essential to save resources and time. In this study, the genetic divergence was estimated using morphological and expressed sequence tag (EST)-derived simple sequence repeats (SSR) markers. Cluster analysis showed that APMS6A and RPHR 1005 belong to groups I and II, respectively, and the hybrid combination recorded the highest mean grain yield of 32.25 g among generated 40 \(\hbox {F}_{1}\hbox {s}\) with standard heterosis of 8.4% over hybrid check, KRH2. The coefficient of marker polymorphism (CMP) value was calculated based on EST-SSR markers; it ranged from 0.40 to 0.80, and a higher CMP value of 0.80 was obtained for the parental combination APMS6A \(\times \) RPHR1005. We predicted heterosis for 40 \(\hbox {F}_{1}\hbox {s}\) based on correlation between CMP and standard heterosis in different traits with standard varietal and hybrid checks indicating positive correlation and significant value for grain yield per plant (\(r=0.58\)**), productivity per day (\(r=0.54\)**), productive tillers (\(r=0.34\)*) and panicle weight (\(r=0.42\)**). This study revealed that the relationship of molecular marker heterozygosity, along with the combining ability, high mean value of different traits, grouping of parental lines based on morphological and molecular characterization is helpful to identify heterotic patterns in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号