共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Daniela Cristina de Oliveira Silva Zenon Silva Gilmar da Cunha Sousa Luiz Fernando Gouvêa e Silva Karina do Valle Marques Alcimar Barbosa Soares Esem Pereira Cerqueira Edson Aparecido Liberti Fausto Bérzin 《Journal of electromyography and kinesiology》2009,19(6):e448-e457
ObjectiveTo evaluate the electromyographic activity of the Pectoralis Major (PM), Biceps Brachii (BB), Pronator Teres (PT) and Flexor Carpi Ulnaris (FCU) muscles involved in simulated armwrestling.MethodsTen trained volunteers were selected to perform the armwrestling movement, during dynamic tests with 40% and 80% of maximum voluntary load (MVL) and static tests in the initial, intermediary and final positions. Electromyographic and force data were normalized for analyses.ResultsIn dynamic tests with 40% MVL, electric activity of the PT muscle was greater than FCU (p < 0.01) and BB (p < 0.05) muscles, and with 80% MVL, PM and PT muscles were the most active. In static tests, electric activity increased from the initial to final positions for the PM muscle (p < 0.05), while it decreased for the BB and PT muscles (p < 0.001 and p < 0.05, respectively). No significant changes were observed for force and no correlation was found with the simultaneous electric activity.ConclusionsIt can be concluded that the PM and FCU muscles participate as agonists in the simulated armwrestling whereas the BB and PT muscles seem to perform secondary functions. Electric activity showed to be dependent on the load and on the position of the upper limb, but not on the force produced during the movement. 相似文献
4.
We dissected the left upper limb of a female orangutan and systematically recorded muscle mass, fascicle length, and physiological cross-sectional area (PCSA), in order to quantitatively clarify the unique muscle architecture of the upper limb of the orangutan. Comparisons of the musculature of the dissected orangutan with corresponding published chimpanzee data demonstrated that in the orangutan, the elbow flexors, notably M. brachioradialis, tend to exhibit greater PCSAs. Moreover, the digital II-V flexors in the forearm, such as M. flexor digitorum superficialis and M. flexor digitorum profundus, tend to have smaller PCSA as a result of their relatively longer fascicles. Thus, in the orangutan, the elbow flexors demonstrate a higher potential for force production, whereas the forearm muscles allow a greater range of wrist joint mobility. The differences in the force-generating capacity in the upper limb muscles of the two species might reflect functional specialization of muscle architecture in the upper limb of the orangutan for living in arboreal environments. 相似文献
5.
Personal computers are one of the commonest office tools in Malaysia today. Their usage, even for three hours per day, leads to a health risk of developing Occupational Overuse Syndrome (OOS), Computer Vision Syndrome (CVS), low back pain, tension headaches and psychosocial stress. The study was conducted to investigate how a multiethnic society in Malaysia is coping with these problems that are increasing at a phenomenal rate in the west. This study investigated computer usage, awareness of ergonomic modifications of computer furniture and peripherals, symptoms of CVS and risk of developing OOS. A cross-sectional questionnaire study of 136 computer users was conducted on a sample population of university students and office staff. A 'Modified Rapid Upper Limb Assessment (RULA) for office work' technique was used for evaluation of OOS. The prevalence of CVS was surveyed incorporating a 10-point scoring system for each of its various symptoms. It was found that many were using standard keyboard and mouse without any ergonomic modifications. Around 50% of those with some low back pain did not have an adjustable backrest. Many users had higher RULA scores of the wrist and neck suggesting increased risk of developing OOS, which needed further intervention. Many (64%) were using refractive corrections and still had high scores of CVS commonly including eye fatigue, headache and burning sensation. The increase of CVS scores (suggesting more subjective symptoms) correlated with increase in computer usage spells. It was concluded that further onsite studies are needed, to follow up this survey to decrease the risks of developing CVS and OOS amongst young computer users. 相似文献
6.
G K Essick K R Bredehoeft D F McLaughlin J A Szaniszlo 《Somatosensory & motor research》1991,8(1):13-22
The capacity of four neurologically healthy young adults to distinguish opposing directions of cutaneous motion was determined at five different sites along the proximal-distal axis of the upper limb. Constant-velocity brushing stimuli (ranging from 0.5 to 32.0 cm/sec) were delivered through an aperture in a Teflon plate that was securely positioned in light contact with the skin. In one series of experiments, directional sensitivity in d' units was assessed at each site, using an aperture length of 0.75 cm. In a second series of experiments, the aperture length required to obtain the same criterion level of directional sensitivity at each site was determined. To attain the sensitivity reached at distal sites, a proximal stimulus had to traverse a longer chord of skin. Specifically, chords 5.9 times longer on average (range = 5.4-6.2) were required on the proximal forearm than on the index finger pad. This finding suggests that relative directional sensitivity increases sixfold from the proximal forearm to the finger pad. Moreover, relative directional sensitivity on the shoulder was comparable to that observed on the proximal forearm for two of the subjects, and approximately one-half that observed on the proximal forearm for the other two subjects. In addition to such a prominent spatial gradient in relative directional sensitivity, the velocity of stimulus motion at which directional sensitivity was highest increased systematically as the test site was shifted from the finger pad to the proximal forearm. Specifically, the optimal velocity on the finger pad varied among subjects from 1.5 to 9.4 cm/sec (mean = 5.4 cm/sec), and on the proximal forearm from 11.5 to 31.2 cm/sec (mean = 18.6 cm/sec). The optimal velocity on the shoulder was not significantly different from that observed on the proximal forearm. The results suggest that effective and informed clinical testing of patients' capacity to distinguish opposing directions of motion on cutaneous regions that differ in peripheral innervation density requires appreciation of the sensitivities of different skin regions, as well as the unique velocity dependency of direction discrimination at each skin site. 相似文献
7.
Steven Morrison Karl M. Newell 《European journal of applied physiology and occupational physiology》1999,80(6):564-574
The bilateral patterns of physiological tremor in the upper limb of adults were examined under conditions where eight combinations of the elbow, wrist and index-finger joints of the right arm were braced using individually molded splints. The hypotheses tested were that: (a) coordination of upper-limb tremor involves (compensatory) coupling of intra- but not inter-limb segments, (b) splinting the respective joints of the right arm changes the organization of this synergy in both limbs, and (c) reducing the involvement of joint-space degrees of freedom through restricting their motion (by splinting) results in increased tremor in the distal segments. Under no-splinting conditions, significant relationships were only observed between adjacent (intra-limb) effector units, with the strength of the correlation increasing from proximal to distal. Splinting the right limb resulted in an increase in the strength and number of significant intra-limb relationships in both limbs. No inter-limb tremor relationships were found between any segment during this task, irrespective of the splinting condition. The frequency profile for the tremor in each limb segment showed two prominent frequency peaks (at 2-4 Hz and 8-12 Hz). A third, higher frequency peak (18-22 Hz) was observed in the index fingers only. Splinting the right limb produced a general increase in the amplitude and variability of tremor in the fingertip of both arms. This effect was particularly strong under conditions where the more proximal joints were splinted. The lack of any between-limb relationships, coupled with the fact that splinting one limb influenced both limbs, suggests that some form of linkage does exist between the limbs. It is unlikely that mechanical linkages can explain fully these relationships. It is proposed that the tremor observed in either limb represents the output of a central oscillatory mechanism(s), but that this output is subsequently independently filtered in a parallel fashion on its way to each respective limb. A common bilateral (compensatory) strategy is employed to minimize the tremor in either limb during this multiple-degrees-of-freedom task. 相似文献
8.
9.
D W Grieve J van der Linden 《European journal of applied physiology and occupational physiology》1986,55(4):425-430
The purpose of the experiment was to examine how force, speed and power output of horizontal pulling with the upper limb was affected by the height of pull. Fourteen seated male subjects made horizontal pulls with maximal effort at eye, shoulder and elbow level from their positions of full reach when the trunk and shoulder girdle were rigidly constrained. Dynamic pulls were performed against a water-filled viscous dynamometer in which the resistance, proportional to the square of the velocity, could be varied. The height of pull had no significant effect on either static or dynamic performance. A force-velocity-position surface is presented which describes the conditions at the handle during the pulls. It confirms the importance of degree of reach upon the dynamic performance, and over a greater range of velocities than has been studied previously. A simple model shows that the similarity of performance at eye, shoulder and elbow heights is remarkable because they occur under very different biomechanical circumstances. The total work done in a complete pull increases with resistance. Peak power output is obtained against the same resistance (50 kg m-1) that was reported for elbow flexion and standing pulls. 相似文献
10.
Timothy A. Burkhart David M. Andrews 《Journal of electromyography and kinesiology》2013,23(3):688-695
The purpose of this study was to explore the effects of fall type and fall height on the kinematics, kinetics, and muscle activation of the upper extremity during simulated forward falls using a novel fall simulation method.Twenty participants were released in a prone position from a Propelled Upper Limb Fall ARrest Impact System. Impacts occurred to the hands from two fall heights (0.05 m and 0.10 m) and three fall types (straight-arm, bent-arm, self-selected). Muscle activation from six muscles (biceps brachii, brachioradialis, triceps brachii, anconeus, flexor carpi radialis and extensor carpi radialis) was collected and upper extremity joint kinematics were calculated.Peak Fx (medio-lateral), as well as Fx and Fz (inferior–superior) load rate increased between the 0.05 m and 0.10 m heights. With respect to fall type, the straight-arm falls resulted in significantly greater Fy (anterior–posterior) impulse and Fy and Fz load rates. The change in elbow flexion angle was greater during the self-selected and bent-arm falls compared to the straight-arm falls; a pattern also seen in the wrist flexion/extension angles. All muscles experienced peak % MVIC prior to the time of the peak force.The results of this study suggest that, to some extent, individuals are capable of selecting an upper extremity posture that allows them to minimize the effects of an impact and it has confirmed the presence of a preparatory muscle activation response. 相似文献
11.
P. W. Buckle 《BMJ (Clinical research ed.)》1997,315(7119):1360-1363
12.
13.
Hanneton S Dedobbeler S Hoellinger T Roby-Brami A 《Journal of applied biomechanics》2011,27(3):272-277
The study proposes a rigid-body biomechanical model of the trunk and whole upper limb including scapula and the test of this model with a kinematic method using a six-dimensional (6-D) electromagnetic motion capture (mocap) device. Large unconstrained natural trunk-assisted reaching movements were recorded in 7 healthy subjects. The 3-D positions of anatomical landmarks were measured and then compared to their estimation given by the biomechanical chain fed with joint angles (the direct kinematics). Thus, the prediction errors was attributed to the different joints and to the different simplifications introduced in the model. Large (approx. 4 cm) end-point prediction errors at the level of the hand were reduced (to approx. 2 cm) if translations of the scapula were taken into account. As a whole, the 6-D mocap seems to give accurate results, except for prono-supination. The direct kinematic model could be used as a virtual mannequin for other applications, such as computer animation or clinical and ergonomical evaluations. 相似文献
14.
Mamaghani NK Shimomura Y Iwanaga K Katsuura T 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2003,22(3):149-157
The purpose of the present paper is to describe and evaluate the polynomial models for predicting the muscular work capacity of the upper limb during sustained holding tasks. This research was concerned with the relationship between indicators of performance, i.e., specific posture or specific level of maximum voluntary contraction (MVC), and then modeling the functional data based on experimental results to estimate factors that may have an effect on task performance. To this end, we designed an experiment using 10 subjects in which each subject performed sustained isometric shoulder and elbow flexion endurance exercise under 27 conditions [3 shoulder angles (SA)x3 elbow angles (EA)x3 levels of %MVC]. Throughout all experiments, subjective perception of effort was assessed using the Borg scale, every 60, 30, and 10 s during the 20%, 40%, and 60% MVC tests, respectively. Proposal models were represented by three approaches: model A: estimation of endurance time (ET), with input variables such as SA, EA, and %MVC; model B: estimation of recommendation time (RT, the time during which the operator was able to maintain a position under the desired condition), with input variables such as SA, EA, %MVC, and required rate on the Borg scale; and model C: estimation of limit strength or %MVC, with input variables such as SA, EA, request limit time for work (LT), and required rate on the Borg scale. Statistical analysis indicated that the three proposal estimation models based on polynomial regression functions showed high significance (p<0.0001). The proposal models suggested and recommended the possibility of finding the best positions entailing the reduction and minimization of total muscular strain from manual material handling tasks in different work situations, with the consequent increase in work efficiency. 相似文献
15.
In this paper, a musculo-skeletal model of the upper limb is presented. The limb is modelled as a three-dimensional 7 degrees-of-freedom system, linked to the shoulder, which has been considered as frame. The upper limb model is made up of four links corresponding to the most important body segments: the humerus, the ulna, the radius and the hand, considered as a single rigid body. Particular attention has been paid to the modelling of joints in order to mimic all the possible arm and forearm movements (including prono-supination). The model also includes 24 muscles. The mathematical model used to describe the muscles is that proposed by Zajac in 1989, modified by the authors. The kinematic analysis has been performed including an ergonomics index to take into account the posture and joint physical limits. Moreover an optimization criterion based on minimum activation pattern has been included in order to find muscular activation coefficients. The results of the proposed methodology concerning muscular activations have been compared to those coming from processed EMG signals, which have been acquired during experimental tests. 相似文献
16.
The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. 相似文献
17.
Structures passing through the triangular space of the human upper limb have been studied in 50 upper limbs from 25 cadavers. In all the specimens used in this study, a branch of the circumflex scapular artery with an accompanying vein was found to pass through this space. 相似文献
18.
S.G. Larson W.L. Jungers C.M. Orr T. Sutikna T. Djubiantono 《Journal of human evolution》2009,57(5):555-570
Several bones of the upper extremity were recovered during excavations of Late Pleistocene deposits at Liang Bua, Flores, and these have been attributed to Homo floresiensis. At present, these upper limb remains have been assigned to six different individuals - LB1, LB2, LB3, LB4, LB5, and LB6. Several of these bones are complete or nearly so, but some are quite fragmentary. All skeletal remains recovered from Liang Bua were extremely fragile, but have now been stabilized and hardened in the laboratory in Jakarta. They are now curated in museum-quality containers at the National Research and Development Centre for Archaeology in Jakarta, Indonesia. These skeletal remains are described and illustrated photographically. The upper limb presents a unique mosaic of derived (human-like) and primitive morphologies, the combination of which is never found in either healthy or pathological modern humans. 相似文献
19.
20.
The aim of this study is to assess the performances of the global optimisation (GO) method (Bone position estimation from skin marker co-ordinates using GO with joint constraints. Journal of Biomechanics 32, 129-134) within the upper limb kinematics analysis. First the model of the upper limb is presented. Then we apply GO method in order to reduce skin movement artefacts that imply relative movement between markers and bones. The performances of the method are then evaluated with the help of simulated movements of the upper limb. Results show a significant reduction of the errors and of the variability due to skin movement. 相似文献