首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study quantified the inter- and intra-test reliability of telemetric surface electromyography (EMG) and near infrared spectroscopy (NIRS) during resistance exercise. Twelve well-trained young men performed high-intensity back squat exercise (12 sets at 70–90% 1-repetition maximum) on two occasions, during which EMG and NIRS continuously monitored muscle activation and oxygenation of the thigh muscles. Intra-test reliability for EMG and NIRS variables was generally higher than inter-test reliability. EMG median frequency variables were generally more reliable than amplitude-based variables. The reliability of EMG measures was not related to the intensity or number of repetitions performed during the set. No notable differences were evident in the reliability of EMG between different agonist muscles. NIRS-derived measures of oxyhaemoglobin, deoxyhaemoglobin and tissue saturation index were generally more reliable during single-repetition sets than multiple-repetition sets at the same intensity. Tissue saturation index was the most reliable NIRS variable. Although the reliability of the EMG and NIRS measures varied across the exercise protocol, the precise causes of this variability are not yet understood. However, it is likely that biological variation during multi-joint isotonic resistance exercise may account for some of the variation in the observed results.  相似文献   

2.
3.
This study addressed the effects of apnea in air and apnea with face immersion in cold water (10 degrees C) on the diving response and arterial oxygen saturation during dynamic exercise. Eight trained breath-hold divers performed steady-state exercise on a cycle ergometer at 100 W. During exercise, each subject performed 30-s apneas in air and 30-s apneas with face immersion. The heart rate and arterial oxygen saturation decreased and blood pressure increased during the apneas. Compared with apneas in air, apneas with face immersion augmented the heart rate reduction from 21 to 33% (P < 0.001) and the blood pressure increase from 34 to 42% (P < 0.05). The reduction in arterial oxygen saturation from eupneic control was 6.8% during apneas in air and 5.2% during apneas with face immersion (P < 0.05). The results indicate that augmentation of the diving response slows down the depletion of the lung oxygen store, possibly associated with a larger reduction in peripheral venous oxygen stores and increased anaerobiosis. This mechanism delays the fall in alveolar and arterial PO(2) and, thereby, the development of hypoxia in vital organs. Accordingly, we conclude that the human diving response has an oxygen-conserving effect during exercise.  相似文献   

4.
Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.  相似文献   

5.
Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.  相似文献   

6.
The oxygen saturation (StO2) and total hemoglobin volume in cutaneous blood are closely related to cutaneous metabolism and are important factors in determining the skin color. Most conventional apparatuses for the measurement of cutaneous metabolism have been designed to evaluate qualitative changes in the oxyhemoglobin volume, deoxyhemoglobin volume, and their sum (total Hb volume) relative to their baseline values. In this study, we developed an instrument for non-invasive evaluation of individual and regional differences in StO2 and Hb volume, a system unaffected by melanin (Kao PSA system model III), and examined the validity of its application. First, changes in StO2 and total Hb volume in the antebrachial region during venous occlusion and devascularization by compression of the brachial region were evaluated. Changes in total Hb volume following venous occlusion were found to reflect the cutaneous blood flow. Also, StO2 was considered to reflect the state of oxygen consumption by the skin, because it was markedly reduced during devascularization. Next, the subjects were exposed to graded hypobaric conditions, and the relationships among StO2, arterial blood oxygen saturation (SaO2), and venous blood oxygen saturation (SvO2) were studied. StO2 showed significant positive correlations with SaO2 (r=0.811, P<0.001) and SvO2 (r=0.966, P<0.001), and its correlation with SvO2 was particularly strong. Therefore, StO2 was found to be closely dependent on SvO2. Lastly, StO2, total Hb volume, and other parameters were measured in healthy women (aged 20–69 years), and their regional differences and age- associated changes were evaluated. These regional differences (angle of mouth > cheek > forehead) and age-associated decreases in StO2 are considered to be caused by the age-associated decreases in the cutaneous blood flow. Received: 21 May 1999 / Revised: 19 November 1999 / Accepted: 24 November 1999  相似文献   

7.
The aim of this study was to examine the effects of assuming constant reduced scattering coefficient (mu'(s)) on the muscle oxygenation response to incremental exercise and its recovery kinetics. Fifteen subjects (age: 24 +/- 5 yr) underwent incremental cycling exercise. Frequency domain near-infrared spectroscopy (NIRS) was used to estimate deoxyhemoglobin concentration {[deoxy(Hb+Mb)]} (where Mb is myoglobin), oxyhemoglobin concentration {[oxy(Hb+Mb)]}, total Hb concentration (Total[Hb+Mb]), and tissue O(2) saturation (Sti(O(2))), incorporating both continuous measurements of mu'(s) and assuming constant mu'(s). When measuring mu'(s), we observed significant changes in NIRS variables at peak work rate Delta[deoxy(Hb+Mb)] (15.0 +/- 7.8 microM), Delta[oxy(Hb+Mb)] (-4.8 +/- 5.8 microM), DeltaTotal[Hb+Mb] (10.9 +/- 8.4 microM), and DeltaSti(O(2))(-11.8 +/- 4.1%). Assuming constant mu'(s) resulted in greater (P < 0.01 vs. measured mu'(s)) changes in the NIRS variables at peak work rate, where Delta[deoxy(Hb+Mb)] = 24.5 +/- 15.6 microM, Delta[oxy(Hb+Mb)] = -9.7 +/- 8.2 microM, DeltaTotal[Hb+Mb] = 14.8 +/- 8.7 microM, and DeltaSti(O(2))= -18.7 +/- 8.4%. Regarding the recovery kinetics, the large 95% confidence intervals (CI) for the difference between those determine measuring mu'(s) and assuming constant mu'(s) suggested poor agreement between methods. For the mean response time (MRT), which describes the overall kinetics, the 95% confidence intervals were MRT - [deoxy(Hb+Mb)] = 26.7 s; MRT - [oxy(Hb+Mb)] = 11.8 s, and MRT - Sti(O(2))= 11.8 s. In conclusion, mu'(s) changed from light to peak exercise. Furthermore, assuming a constant mu'(s) led to an overestimation of the changes in NIRS variables during exercise and distortion of the recovery kinetics.  相似文献   

8.
9.
Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas–liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.  相似文献   

10.
11.
Blood pressure and continuous electrocardiogram recordings were obtained from 12 participants during spontaneous breathing (SB1), dynamic handgrip exercise at 20% (HG(20)) of maximal voluntary contraction (MVC), and spontaneous breathing (SB2) and dynamic handgrip exercise at 60% (HG(60)) of MVC. Repeated-measures ANOVAs were used to examine the effects of the exercise conditions on mean arterial pressure (MAP), on mean standard deviation (SDNN), and on the coefficient of variation of R-R intervals. The mean R-R interval responded to exercise in an intensity-dependent manner. SDNN decreased with exercise but was not intensity dependent. Coefficient of variation decreased during HG(20), and MAP increased following HG(60). These data are consistent with the notion that changes in cardiovascular function with low-intensity exercise are primarily mediated by parasympathetic withdrawal, and as exercise intensity increases, additional cardiovascular reactivity is mediated by increased sympathetic outflow. The change in the coefficient of variation from rest to exercise was unique in comparison to the changes in SDNN, and this merits further investigation.  相似文献   

12.
13.
We hypothesized that near-infrared spectroscopy(NIRS) measures of hemoglobin and/or myoglobinO2 saturation(IR-SO2)in the vascular bed of exercising muscle would parallel changes infemoral venous O2 saturation(SfvO2)at the onset of leg-kicking exercise in humans. Six healthy subjectsperformed transitions from rest to 48 ± 3 (SE)-W two-legged kickingexercise while breathing 14, 21, or 70% inspiredO2.IR-SO2 wasmeasured over the vastus lateralis muscle continuouslyduring all tests, and femoral venous and radial artery blood sampleswere drawn simultaneously during rest and during 5 min of exercise. Inall gas-breathing conditions, there was a rapid decrease in bothIR-SO2 andSfvO2 at the onset of moderate-intensityleg-kicking exercise. Although SfvO2 remained atlow levels throughout exercise,IR-SO2increased significantly after the first minute of exercise in bothnormoxia and hyperoxia. Contrary to the hypothesis, these data showthat NIRS does not provide a reliable estimate of hemoglobinand/or O2 saturation asreflected by direct femoral vein sampling.  相似文献   

14.
15.
16.
17.
By complementary use of freeze-etching and scanning electron microscopy techniques, the morphology of cytoplasmic membrane and mitochondria of bakers' yeast ( Saccharomyces cerevisiae ) was shown to be sensitive to momentary lack of dissolved oxygen in fed-batch growth medium. Cells grown under constant excess oxygenation had more invaginations on their cytoplasmic membranes and showed larger mitochondria as assessed from the dimensions of their giant mitochondria.  相似文献   

18.
Sixteen healthy term infants underwent 12 hour tape recordings of arterial oxygen saturation (SaO2)(Nellcor N100 in beat to beat mode) and breathing movements at around 6 weeks, 3 and 6 months of age. Six of these infants had an additional recording at around their first birthday. Recordings were analysed throughout for pauses in breathing movements of greater than or equal to 4 s (apnoeic pauses), episodes in which SaO2 fell to 80% (desaturations), and (only during regular breathing) baseline SaO2. In the 16 infants studied at 6 weeks, 3 and 6 months, the median frequency of both apnoeic pauses (5.6, 5.7, and 6.1/h, respectively) and desaturations (0.7, 0.4 and 0.5/h, respectively) showed little change. The majority of desaturations followed an apnoeic pause (median 73.2, 86.2 and 93.8% of desaturations). The median proportion of apnoeic pauses followed by a desaturation did not change significantly (9.0, 7.5 and 9.1%), despite an increase in the proportion of apnoeic pauses of greater than or equal to 8 s in duration from 2.0% at 6 weeks to 5.3% at 3 months (P less than 0.01). Baseline SaO2 was 97.3% or higher in all recordings. Median baseline SaO2 increased from 99.6 to 99.9% between 6 weeks and 3 months (P less than 0.02) and remained unchanged thereafter. In the subgroup of infants studied also at one year of age, again no significant differences were found with increasing age in the frequency of either apnoeic pauses or desaturations. The data show that in healthy subjects no major changes occur between 6 weeks and 1 year of life in apnoeic pause frequency or arterial oxygenation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Most phenomenological, statistical models used to generate ecological forecasts take either a time-series approach, based on long-term data from one location, or a space-for-time approach, based on data describing spatial patterns across environmental gradients. However, the magnitude and even the sign of environment–response relationships detected using these two approaches often differs, leading to contrasting predictions about responses to future environmental change. Here we consider how the forecast horizon determines whether more accurate predictions come from the time-series approach, the space-for-time approach or a combination of the two. As proof of concept, we use simulated case studies to show that forecasts for short and long forecast horizons need to focus on different ecological processes, which are reflected in different kinds of data. First, we simulated population or community dynamics under stationary temperature using two simple, mechanistic models. Second, we fit statistical models to the simulated data using a time-series approach, a space-for-time approach or a weighted average. We then forecast the response to a temperature increase using the statistical models, and compared these forecasts to temperature effects simulated by the mechanistic models. We found that the time-series approach made accurate short-term predictions because it captured initial conditions and effects of fast processes such as birth and death. The space-for-time approach made more accurate long-term predictions because it better captured the influence of slower processes such as evolutionary and ecological selection. The weighted average made accurate predictions at all time scales, including intermediate time-scales where the other two approaches performed poorly. A weighted average of time-series and space-for-time approaches shows promise, but making this weighted model operational will require new research to predict the rate at which slow processes begin to influence dynamics.  相似文献   

20.
Lee J  Folley BS  Gore J  Park S 《PloS one》2008,3(3):e1760
Abnormal prefrontal functioning plays a central role in the working memory (WM) deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI). We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS) using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased 'false memory' errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased "false memory" errors and accompanying bilateral prefrontal activation in schizophrenia suggest that the etiology of memory errors must be considered when comparing group performances. Finally, the concordance of fMRI and NIRS data supports NIRS as an alternative functional neuroimaging method for psychiatric research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号