首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to 'stage' events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10(-7) M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 microgram/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O2-. (10-15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O2-. generation and aggregation (30-35 s).  相似文献   

2.
Propionic acid-induced calcium mobilization in human neutrophils   总被引:1,自引:0,他引:1  
The ability of propionic acid to elicit an increase in the level of cytoplasmic free calcium in human neutrophils was examined in detail. Propionic acid induced a rapid and dose-dependent mobilization of calcium that relied on both internal and external sources of calcium. The effects of propionic acid on the mobilization of calcium were inhibited by pertussis toxin, but not cholera toxin, implicating a guanine nucleotide binding protein. Furthermore, preincubation of the neutrophils with phorbol 12-myristate 13-acetate resulted in a decreased mobilization of calcium. This inhibitory activity of phorbol myristate acetate was antagonized by the protein kinase C inhibitor H-7. Preincubation of the cells with the synthetic chemotactic factor fMet-Leu-Phe caused a reduction in the magnitude of the calcium transient elicited by propionic acid. However, the calcium response to propionic acid was not affected by antagonists of fMet-Leu-Phe and platelet-activating factor binding or by an inhibitor of leukotriene synthesis. Propionic acid did not elicit a mobilization of calcium in monocytes, platelets, lymphocytes, or undifferentiated HL-60 cells. However, the treatment of the HL-60 cells with dimethylsulfoxide resulted in the appearance of a calcium response to propionic acid. The potential physiological significance of these findings are discussed.  相似文献   

3.
A Penfield  M M Dale 《FEBS letters》1985,181(2):335-338
Superoxide release from human neutrophils was stimulated either by receptor activation (using fMet-Leu-Phe) or by activating, independently, each of the two pathways considered to be involved in signal transduction--calcium mobilization (using the ionophore, A23187) and protein kinase C activation (using phorbol myristate acetate or 1-oleoyl-2-acetylglycerol). Prostaglandin E1 (3 X 10(-5) M) decreased fMet-Leu-Phe-stimulated superoxide release, had no effect on superoxide release stimulated by A23187, or by phorbol myristate acetate, and markedly enhanced the superoxide release stimulated by 1-oleoyl-2-acetylglycerol. Similar enhancement was obtained with prostaglandin E2.  相似文献   

4.
Phagocytosis-induced release of arachidonic acid from human neutrophils   总被引:6,自引:0,他引:6  
The phospholipids of human neutrophils were labeled with [3H] arachidonic acid and [14C] palmitic acid. Phagocytosis of opsonized zymosan resulted in rapid release of free arachidonic acid but not of palmitic acid. Arachidonic acid was not released when the cells were exposed to unopsonized zymosan, zymosan-activated serum, or phorbol myristate acetate. These observations suggest that phagocytosis of opsonized zymosan results in the activation of a phospholipase A2.  相似文献   

5.
gamma-Hexachlorocyclohexane was found to exert profound effects on the phosphatidylinositol cycle, cytosolic calcium level, and the respiratory burst of human neutrophils. Exposure of neutrophils prelabelled with 32P to 4 X 10(-4) M gamma-hexachlorocyclohexane almost tripled radioactivity in phosphatidic acid and correspondingly decreased radioactivity in phosphatidylinositol 4,5 bisphosphate. Under similar conditions, gamma-hexachlorocyclohexane evoked the generation of superoxide at a rate of over 11 nmol/min/10(6) cells and more than doubled cytosolic-free calcium concentration as monitored by Quin-2 fluorescence. Because intermediates of the phosphatidylinositol cycle, via increases in available calcium levels or activated protein kinase C, are considered potential second messengers for activation of the NADPH-dependent O-2-generating system, we compared neutrophil responses to gamma-hexachlorocyclohexane with responses to phorbol myristate acetate, an activator of protein kinase C with well known effects on neutrophils. Like phorbol myristate acetate, gamma-hexachlorocyclohexane induced neutrophil degranulation but was not an effective chemotactic stimulus. The ability of gamma-hexachlorocyclohexane to induce a pattern of oxidative activation in neutrophil cytoplasts similar to that in intact cells indicated that concurrent degranulation was not required for sustained O-2 generation in response to this agent. When neutrophils or neutrophil cytoplasts exposed to gamma-hexachlorocyclohexane were centrifuged and resuspended in stimulus-free medium, O-2 generation ceased entirely but could be reinitiated by addition of the same stimulus. This finding was in contrast to the continued O-2 production by phorbol myristate acetate-stimulated neutrophils similarly washed and resuspended in stimulus-free medium. Unlike subcellular fractions of phorbol myristate acetate-stimulated neutrophils, corresponding fractions prepared from gamma-hexachlorocyclohexane-stimulated neutrophils contained almost no detectable NADPH-dependent O-2-generating activity. Subcellular oxidase activity was not recovered when cells and membrane fractions were continuously exposed to gamma-hexachlorocyclohexane during disruption and fractionation after cell stimulation, nor could it be induced by the addition of the stimulus to the subcellular fractions. Thus, the stimulus dependence of continuous neutrophil superoxide release evoked by gamma-hexachlorocyclohexane does not merely reflect a physical interaction of the agonist with the enzyme system involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Endogenous phospholipid metabolism was examined during the initial 0–120 seconds of neutrophil (PMN) stimulation. When PMN were exposed to the chemotactic peptide FMLP (10?7 M) or the tumor promotor, phorbol myristate acetate (PMA, 1 μg/ml) extensive changes in specific phospholipid (PL) classes were evident within 15 seconds. The profile and kinetics of stimulus-induced PL changes were stimulus-dependent. Five seconds after the addition of FMLP, PMN content of PC, PS and PA increased, while the level of PI decreased. Kinetic studies revealed that only PA levels remained elevated (0–120 s) while other PL decreased. In contrast, when cells were exposed to PMA (1 μg/ml), the levels of PC and PS rapidly increased (< 15 s). With PMA as stimulus, changes in PI and PA were not observed until > 60 s. Results indicate that exposure to PMN to stimuli leads to rapid changes in specific PL. In addition, they support the concept that neutrophils rapidly “remodel” endogenous PL upon stimulation.  相似文献   

7.
We have examined the role of GTP-binding proteins and the associated cyclic AMP- and calcium-related transduction mechanisms in the regulation of capping in human neutrophils. Pertussis toxin (PT), a probe for the GTP-binding protein Ni, abolished capping induced by fluorescein isothiocyanate-conjugated concanavalin A (Con-A), whereas cholera toxin, a probe for the GTP-binding protein Ns, was without effect. Consistent with the latter finding, ligands acting at receptors associated with the Ns protein, namely the prostaglandin E1 and beta-adrenergic agonists, were without effect on the capping reaction. The possible role of mobilization of internal calcium was evaluated by using Quin2-loaded cells. Calcium mobilization was observed at concentrations of Con-A which yielded optimal capping (10 micrograms/ml). Treatment with PT, phorbol myristrate acetate or 8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) abolished both calcium mobilization and capping. Colchicine, which substantially enhanced capping, had no effect on calcium mobilization. At concentrations of the lectin above those required for capping, superoxide generation and enzyme release were noted. These reactions were less susceptible to inhibition by PT, effects being observed only on the Kact. for Con-A-mediated superoxide generation with little effect on the Vmax. The degree of PT-mediated inhibition for enzyme release with Con-A was much lower than that observed with fMet-Leu-Phe. Our results imply that a step involving Ni-mediated calcium mobilization, sensitive to phorbol myristate acetate, is essential to the regulation of capping; a distinct mechanism may be involved in colchicine-mediated enhancement of capping; and Ni may play a relative minor role in the regulation of lectin-mediated exocytosis.  相似文献   

8.
Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.  相似文献   

9.
The tumor co-promoter phorbol 12, myristate 13, acetate (PMA) has previously been shown to stimulate several of the characteristic functions (aggregation, degranulation, and the oxidative burst) of polymorphonuclear leukocytes (neutrophils). We describe here a novel feature of the action of PMA on neutrophils, namely its ability to inhibit the chemotactic factor-induced increased in the enzyme secretion and in the intracellular concentration of free calcium. The inhibition is maximal within 3 min of the addition of PMA and is concentration-dependent (IC50 = 8.5 ng/ml). The site of action of PMA is distal to the binding of the chemotactic factors. PMA inhibits both the release of intracellular calcium and the permeability changes to calcium induced by chemotactic factors, but does not affect the stimulation of the rate of influx of sodium produced by the same agents. The PMA analog 4 alpha-phorbol 12, 13-didecanoate, which lack tumorigenicity and the ability to activate the calcium- and phospholipid-dependent protein kinase (protein kinase C), does not inhibit any of the above fMet-Leu-Phe-stimulated neutrophil functions. The present results thus demonstrate that phorbol esters, either directly or indirectly, possibly through the activation of protein kinase C, inhibit the signal(s) responsible for the stimulated mobilization of calcium in rabbit neutrophils.  相似文献   

10.
A monoclonal antibody against rat neutrophils, RP-1, was produced by hybridizing a mouse myeloma (P3-X63-Ag8.653) with BALB/c mouse spleen cells sensitized with peritoneal neutrophils from Wistar-King-Aptakeman/Hok rats. RP-1 specifically reacted to neutrophils and bone marrow cells from rats of various strains. The expression of an antigen reactive to RP-1 on rat peritoneal neutrophils was enhanced by stimulation with phorbol myristate acetate and concanavalin A. The experimental result that the expression of an antigen reactive with another anti-neutrophil monoclonal antibody was not enhanced by stimulation with phorbol myristate acetate indicates that the antibody-binding capacity of stimulated neutrophils was not nonspecifically enhanced. The enhancement of antigen expression was temperature dependent. A glycolytic inhibitor, 2-deoxy-D-glucose, and an inhibitor of intracellular calcium mobilization, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester hydrochloride, which inhibited hydrogen peroxide release from stimulated neutrophils, did not inhibit enhancement of the expression of an antigen reactive with RP-1.  相似文献   

11.
The relevance of phosphoinositide remodeling to calcium movements and to the physiological response of superoxide anion (O2-) generation was probed in neutrophils stimulated by the chemotactic peptide fMet-Leu-Phe and the lectin concanavalin A. fMet-Leu-Phe and concanavalin A triggered O2- generation but elicited different patterns of calcium mobilization and phosphoinositide remodeling. fMet-Leu-Phe (10(-7) M) triggered a rise in cytosolic calcium by mobilization of intracellular calcium (fura-2) and increased calcium permeability (45Ca uptake), while concanavalin A (100 micrograms/ml) elicited a rise in cytosolic calcium, primarily by uptake of extracellular calcium (45Ca uptake). fMet-Leu-Phe triggered rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate and phosphatidylinositol, and generation of inositol 1,4,5-trisphosphate (IP3). In contrast concanavalin A triggered breakdown of phosphatidylinositol, but not PIP2, nor was there a significant increase in IP3. However, both fMet-Leu-Phe and concanavalin A triggered a rapid biphasic increase in levels of labeled diacylglycerol (in [3H]arachidonate or [14C]glycerol prelabeled cells) and a 3-fold increase in [32P] phosphatidic acid. These results are concordant with a role for PIP2 breakdown and generation of IP3 specifically in intracellular calcium mobilization but not for other aspects of the signaling pathway for O2- generation. Calcium permeability changes were associated with elevated diacylglycerol and [32P]phosphatidic acid, although a cause and effect relationship is not apparent. Ligands such as concanavalin A enhance cytosolic calcium and trigger generation of O2- without significant PIP2 remodeling; elevated diacylglycerol and cytosolic calcium are the common events associated with ligand-induced O2- generation.  相似文献   

12.
Tumor promoters, such as phorbol myristate acetate (PMA), facilitate carcinogenesis by mechanisms that may involve changes in intracellular Ca2+ metabolism and distribution of Ca2+, as well as activation of a Ca2+-and phospholipid-dependent protein kinase, referred to as protein kinase C. We compared the actions of PMA on GH3 cloned pituitary cells with those of thyrotropin releasing hormone (TRH), an established Ca2+-mobilizing agent. The TRH treatment produced a45Ca efflux, inhibited45Ca uptake, diminished chlortetracycline fluorescence, and stimulated cAMP accumulation and protein synthesis in a Ca2+-dependent manner. Like TRH, PMA produced an efflux of45Ca and inhibited45Ca uptake; however, the phorbol ester stimulated cAMP accumulation and protein synthesis in the absence of external calcium and failed to alter chlortetracycline fluorescence. The TMB-8, a putative inhibitor of the mobilization of membrane-associated Ca2+, did not alter PMA-induced stimulation of protein synthesis. The results suggest that PMA-induced changes in Ca2+ metabolism are not caused by the mobilization of membrane-associated calcium. Alternative proposals are that PMA (1) inhibits Ca2+ influx and/or (2) mobilizes calcium from nonmembranous storage sites. Further study is needed to characterize the mechanism through which tumor-promoting phorbol esters influence Ca2+ metabolism and to ascertain the significance of changes in Ca2+ metabolism to cellular processes affected by these substances.  相似文献   

13.
Receptors for a chemotactic peptide (fMet-Leu-Phe) in guinea pig neutrophils were primarily coupled to phospholipase C catalyzing breakdown of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate, which was in turn responsible for intracellular Ca2+ mobilization. These early responses of neutrophils to fMet-Leu-Phe, eventually leading to O2- generation, were abolished by prior exposure of cells to islet-activating protein (IAP), pertussis toxin, which had been reported to bring about ADP-ribosylation of a membrane Mr = 41,000 protein (Okajima, F., and Ui, M. (1984) J. Biol. Chem. 259, 13863-13871). The IAP substrate, probably the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase (Ni) or an analogous protein, is hence proposed to mediate fMet-Leu-Phe receptor-linked activation of the phospholipase C. In support of this proposal, A23187 and phorbol myristate acetate which stimulate arachidonate release or O2- generation by-passing these early processes of signaling were effective in IAP-treated cells as well. Release of arachidonic acid and accumulation of inositol 1-monophosphate in delayed response to fMet-Leu-Phe were also abolished by the IAP treatment of cells, despite the fact that slowly-onset inflow of Ca2+ which must be responsible for these delayed responses was observed in these IAP-treated cells. Thus, the IAP substrate may play an additional role in Ca2+-dependent activation of somehow compartmentalized phospholipases.  相似文献   

14.
The modulatory influences of phorbol esters on the functional responsiveness of human peripheral blood neutrophils have been investigated. These studies focused on measurements of the levels of cytoplasmic free calcium and of tyrosine phosphorylation as well as on their ability to mount an oxidative response. Short incubation times (< 1 min) with low concentrations of phorbol esters (5-50 nM) were shown to enhance the above indices of neutrophil responsiveness to chemotactic factors such as fMet-Leu-Phe and leukotriene B4. On the other hand, a time- and concentration-dependent inhibition of calcium mobilization and superoxide production was also observed. The effects of the phorbol esters were stereo-specific and were antagonized by a novel protein kinase C inhibitor (RO 318220) but were not affected by the oxidative burst inhibitor diphenyleneiodonium. Pre-incubation of the cells with phorbol 12,13-dibutyrate (PDBu) altered in a concentration-dependent manner the tyrosine phosphorylation pattern stimulated by fMet-Leu-Phe. In addition, the tyrosine kinase inhibitor erbstatin inhibited the priming of the mobilization of calcium induced by PDBu. These data demonstrate the rapidity of the effects of the activation of protein kinase C, their potential to modulate positively the early events of the excitation-response coupling sequence and the complexity of the functional interrelationships among the various cellular activation pathways available to human neutrophils and other non-muscle cells.  相似文献   

15.
Phosphatidylinositol 3′-kinase (PI 3′-kinase) plays an important role in the migration of hepatocytes, endothelial cells and neoplastic cells to agonists which activate cellular tyrosine kinases. We examined the PI 3′-kinase-dependent chemotactic responses of neutrophilic leukocytes induced by phosphatidic acid (PA) in order to clarify mechanisms by which the enzyme potentially influences cellular migration. Western analysis of immunoprecipitates indicated that PA induced the tyrosine phosphorylation of three distinct proteins involved in functional activation which co-immunoprecipitated in PA-stimulated cells. These proteins were identified as lyn, syk and the 85 kDa regulatory subunit of PI 3′-kinase. Chemotactic responses to PA but not to several other neutrophil agonists were inhibited by the PI 3′-kinase inhibitors wortmannin and LY294002. Chemotactic inhibition resulted from upstream inhibition of calcium mobilization. Chelation of extracellular calcium by ethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetraacetic acid (EGTA) did not affect the PA-induced chemotaxis, whereas chelation of intracellular calcium by 1,2-bis(2-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA) attenuated this response. Thus, changes in intracellular Ca2+ levels that can be effected by Ca2+ mobilized from intracellular stores in the absence of Ca2+ influx regulate PA-induced chemotaxis. Furthermore, PI 3′-kinase inhibition blunted the agonist-dependent generation of inositol 1,4,5-trisphosphate (IP3), suggesting that PI 3′-kinase exerted its effects on calcium mobilization from intracellular sources by mediating activation of phospholipase C (PLC) in PA-stimulated cells. Moreover, the PI 3′-kinase inhibitor LY294002 also inhibited phosphorylation of syk in PA-stimulated cells. We, therefore, propose that products of PI 3′-kinase confined to the inner leaflet of the plasma membrane play a role in activation of syk, calcium mobilization and induction of chemotactic migration.  相似文献   

16.
Human neutrophils when exposed to appropriate stimuli aggregate, generate O(2) and secrete lysosomal constituents. To determine whether a causal relationship may exist between these responses neutrophils were exposed to either N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, or the two calcium ionophores, A23187 and prostaglandin Bx. Each agent elicited all of the above responses. The concentrations required to elicit the aggregation of 30 . 10(6) neutrophils/ml were comparable to that required for O(2) generation or lysozyme release. In a series of experiments designed to dissociate these responses, cells were suspended in a concentration too dilute (3 . 10(6) neutrophils/ml) to permit aggregation to occur. O(2) generation and lysozyme release was measurable and varied in a dose-dependent fashion to the concentration of stimulus. In a second series of experiments, neutrophils were treated with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to inhibit degranulation without affecting O(2) generation. Aggregation was inhibited in a parallel fashion with lysozyme release. When detectable O(2) was removed from the medium by superoxide dismutase and catalase, aggregation and lysozyme release unaffected showing that aggregation can not be due to the presence of O(2) or its products in the extracellular medium. Neither aggregation of resting cells nor augmentation of fMet-Leu-Phe-induced aggregation was observed when cells were exposed to either supernatants of degranulated neutrophils or constituents of specific granules (lysozyme, lactoferrin). Kinetic analysis showed that in the absence of cytochalasin B degranulation preceded aggregation, while in its presence aggregation preceded degranulation.  相似文献   

17.
Following DEAE-Sephacel and affinity chromatography a highly enriched lipid stimulated kinase activity could be recovered with a purification fold of 1725. The peak kinase activity fraction eluted with 0.1 mM calcium from phosphatidyl serine affinity chromatography showed a major protein of 70 kD and a minor band of 55 kD molecular weight and showed kinase activity that was stimulated by phorbol myristate acetate in the presence of phosphatidylserine and calcium. The optimum requirement was 2.5 × 10?6 M, 1.25 × 10?4 M, 1 × 10?4 M, and 1.7 × 10?6 M for phorbol myristate acetate, phosphatidyl serine, oleyl acetyl glycerol and free calcium respectively. The kinase activity was inhibited by H-7 and staurosporine. The binding of [3H]-phorbol myristate acetate was associated with purified fraction as resolved by get electrophoresis and the kinase activity was also precipitated by animal protein kinase C antibodies. The present data give strong evidence for the presence of phorbol myristate acetate stimulated kinase in plants.  相似文献   

18.
The relationship between receptor-ligand interaction in human neutrophils and initiation of enhanced Ca permeability ("45Ca uptake") has been correlated with cell function. Different ligands varied in their efficacy in provoking 45Ca permeability changes: chemotactic peptide f-Met-Leu-Phe greater than concanavalin A greater than immune complexes greater than phorbol myristate acetate. Mixtures of stimuli at optimal concentrations elicited no summation of responses, indicating that interaction of f-Met-Leu-Phe, concanavalin A, and phorbol myristate acetate with their respective "receptors" regulates a common site of 45Ca uptake. The onset of Ca uptake was an early event, preceding onset of aggregation, O-2 generation, and degranulation. Enhanced 45Ca permeability during neutrophil activation is dependent on mobilization of intracellular Ca, since 8-(N,N-diethylamino)-octyl:3,4,5-trimethoxybenzoate hydrochloride was a potent inhibitor of the Ca permeability response. In contrast, calmodulin antagonists did not inhibit Ca permeability changes; the requirement for calmodulin in the physiological responses of aggregation, O-2 generation, and degranulation must therefore be subsequent to activation of the "Ca translocator." We propose a role for a "Ca-translocating mechanism" as an amplifying factor in neutrophil activation.  相似文献   

19.
Changes in ascorbate levels on stimulation of human neutrophils   总被引:1,自引:0,他引:1  
Changes in ascorbate levels have been measured in human neutrophils stimulated with opsonized zymosan, phorbol myristate acetate and formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe), in the presence and absence of cytochalasin B. After stimulation with opsonized zymosan or phorbol myristate acetate, there was no loss of total ascorbate, but 30-40% of the reduced ascorbate was oxidized to dehydroascorbate. Superoxide dismutase and catalase added to the cell suspension did not inhibit this oxidation. fMet-Leu-Phe, however, gave no net oxidation but about 20% of the total ascorbate was lost during 2 h incubation. These results imply that there is not a simple relationship between superoxide and hydrogen peroxide production and ascorbate oxidation, and that release of ascorbate into the phagolysosomes does not occur.  相似文献   

20.
In guinea pig periotoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号