首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
Follicle stimulating hormone (FSH) stimulates “colony formation” by immature rat Sertoli cells in primary culture. “Colony formation” involves cell aggregation. Consequently, the involvement of cell surface glycoproteins in cell aggregation was investigated by treatment of dissociated 10-day rat testis cells with sodium metaperiodate, glucosamine, various lectins, tunicamycin, and puromycin. Treatment of control cultures with 5 μM glucosamine stimulated cell aggregation; however, glucosamine did not affect FSH-stimulated cultures. Treatment of dissociated testis cells with 5 μM sodium metaperiodate, 10 μg/ml castor bean agglutinin (ricin), or 2.5 μg/ml horseshoe crab agglutinin inhibited FSH stimulation of cell aggregation. A similar inhibition of cell aggregation was observed following addition of 10 μg/ml puromycin or tunicamycin to culture media from 0- to 18-hours incubation. Treatment with soybean agglutinin, concanavalin A, or wheat germ agglutinin had no effect. The galactose-specific lectins, Ricin, Ricinus communis agglutinin I, and Bendeirea simplicifolia agglutinin, inhibit the FSH stimulation of 3H-aminoacid incorporation as well as cell aggregation in 24-hour cultres. The inhibition of cell aggregation by sodium metaperiodate treatment was reversed with 5 μM sodium borohydride reduction. Sodium metaperiodate treatment did not alter cell viability (as assayed with trypan blue dye exclusion), did not alter cell attachment, nor significantly decrease 125I-FSH binding by cultured testis cells. The results suggest that FSH stimulation of cell aggregation by immature rat Sertoli cells requires cell surface glycoprotein interactions. Furthermore, the specificity of lectin inhibition suggests that glycoproteins with terminal galactose and sialic acid residues are required for the FSH induction of cell aggregation.  相似文献   

2.
Xenopus laevis A6 cells, which are cloned epithelial cells from the Xenopus kidney, differentiate into a dome structure when the cells reach confluence. We investigated the gravitational responses of A6 cellular motility during normal differentiation and differentiation under hypergravity conditions using centrifugation (1-100 x g). Progression to dome formation was analyzed by time-lapse micrography. Dome formation and increased expression of Na(+)/K(+)-adenosine triphosphatase were used as markers of differentiation. Interestingly, a high rate of cellular proliferation was observed at a low level of hypergravity (5 x g). Despite this, there was no difference in the time to dome formation between the control cells at primary cell density and those that differentiated under hyper- or hypogravity conditions. In conclusion, this experiment on amphibian cells revealed that the proliferation of A6 cells was strongly affected by gravity conditions, but the differentiation step appears to be controlled by an intra- or intercellular clock.  相似文献   

3.
Tunicamycin, a glucosamine-containing antibiotic inhibited the conjugation process of Tetrahymena pyriformis. Sexual pairing was prevented completely when 1.5 μg/ml of tunicamycin was added to a mixture of the two mating types. Tunicamycin caused preferential inhibition of glycoprotein synthesis in Tetrahymena pyriformis. At 1.5 μg/ml and 6 μg/ml tunicamycin inhibited by 40% and 60% respectively [3H]-glucosamine incorporation into material precipitated by ethanol, while it did not affect [14C]-leucine incorporation. Cell division was also inhibited when the drug was added either to the regular growth medium or to the starvation medium.  相似文献   

4.
Pretreatment with the nucleoside antibiotic tunicamycin was found to protect cultured renal epithelial cells in the face of ATP-depletion, in large part by preserving junctional and cellular architecture. Tunicamycin pretreatment of Madin-Darby canine kidney cells not only preserved E-cadherin staining at the plasma membrane, but also inhibited ATP-depletion-mediated E-cadherin degradation. Electron microscopic analysis, together with the preservation of the staining patterns of the tight junction marker ZO-1, the apical/microvillar marker gp135, and basolateral marker Na/K-ATPase suggested that tunicamycin preserved the junctional complex and the polarized epithelial cell phenotype. Tunicamycin pretreatment also prevented reductions in the filamentous actin content of the cells, as well as preserving Golgi architecture. Moreover, a quantitative measure of cell adhesion demonstrated that tunicamycin pretreatment resulted in a fivefold increase in attachment of cells to the substratum (77% versus 16%). Thus, pretreatment with tunicamycin protects polarized epithelial cells from ischemic injury through the preservation of epithelial cell architecture, intercellular junctions, and cell-substratum interactions in the setting of intracellular ATP-depletion.  相似文献   

5.
The aggregation program of Dictyostelium discoideum is extremely sensitive to the effects of tunicamycin when the drug is added to cells during the first few hours of starvation. Inhibition of development is observed with concentrations as low as 0.5 micrograms/ml, which cause only a 25%-30% inhibition of general N-linked glycosylation. However, 0.5 micrograms/ml tunicamycin can result in the total inhibition of N-linked glycosylation of specific, developmentally regulated, proteins, as exemplified by the glycoprotein 117 antigen. If added after the first hours of starvation, tunicamycin cannot inhibit aggregation even when present at 10 micrograms/ml, which maximally inhibits N-linked glycosylation. cAMP pulses can override the inhibitory effects of tunicamycin on cell aggregation. The data support the hypothesis that there is an early developmental pathway that is dependent on the N-linked glycosylation of one, or a small set of developmentally regulated proteins and that this pathway may involve the biogenesis of the chemotactic signalling system. In addition, the data raise questions as to the role of N-linked oligosaccharides in cell cohesion.  相似文献   

6.
Tunicamycin was found to specifically inhibit the incorporation of a number of sugars into L1210 leukemia cell glycoproteins. This inhibition of glyco-protein biosynthesis led to a cessation of cell growth which was reversible in a dose-dependent and time-dependent manner. After removal of the antibiotic from L1210 cell cultures resumption of sugar incorporation preceded that of thymidine incorporation and the recovery of cell growth. The treatment of cells with tunicamycin resulted in a significant increase in the intracellular pool of UDP-N-acetylglucosamine which occurred concurrently with alterations in cell ultrastructure including distentions of the endoplasmic reticulum and nuclear membranes. Similar ultrastructural changes and increases in the intracellular pools of UDP-sugars were observed in L1210 cells exposed to 5 mM D-glucosamine, which suggested that the antiproliferative effects of tunicamycin may be related to the accumulation in the endoplasmic reticulum of one or more nucleotide sugar precursors of asparagine-linked glycoprotein biosynthesis. However, the biological effects of tunicamycin could be distinguished from those caused by D-glucosamine. Exposure of L1210 cells to tunicamycin resulted in specific alterations in the biochemical composition of the plasma membrane and in the inhibition of cellular agglutination by wheat germ agglutinin which were not apparent following exposure to equitoxic concentrations of the aminosugar. These studies, together with those which demonstrated that recovery of the cellular capacity to synthesize glycoproteins was obligatory for the recovery of cellular proliferation in tunicamycin-treated cells, suggested that inhibition of the synthesis of glycoproteins was the major factor limiting L1210 leukemic cell proliferation.  相似文献   

7.
目的:探讨盐酸罗哌卡因对骨肉瘤细胞增殖、侵袭、凋亡的影响及分子机制。方法:采用逐步增加药物剂量诱导法建立骨肉瘤多柔比星耐药细胞株(U2OS/DOX),用浓度分别为0、20、50、100 μg/ml的盐酸罗哌卡因处理U2OS/DOX细胞,作为不同浓度盐酸罗哌卡因处理组;将pcDNA3.1、pcDNA3.1-Livin转染至U2OS/DOX细胞中再用浓度为100 μg/ml的盐酸罗哌卡因处理,记为盐酸罗哌卡因100 μg/ml+pcDNA3.1组、盐酸罗哌卡因100 μg/ml+pcDNA3.1-Livin组。MTT检测细胞增殖抑制率及细胞半数抑制浓度(IC50);蛋白质印迹(Western blot)法检测细胞周期蛋白依赖性激酶抑制剂1A(P21)、活化的半胱氨酸天冬氨酸蛋白酶-3(Cleaved Caspase-3)、上皮钙黏蛋白(E-cadherin)、基质金属蛋白酶2(MMP-2)、Livin蛋白表达;克隆形成实验检测细胞克隆形成数;流式细胞术检测细胞凋亡;Transwell检测细胞迁移和侵袭;实时荧光定量PCR(RT-qPCR)检测Livin mRNA表达水平。结果:多柔比星浓度大于1 μg/ml时,骨肉瘤细胞U2OS增殖抑制率显著升高,且具有剂量依赖性(P<0.05);多柔比星浓度大于10 μg/ml时,骨肉瘤细胞骨肉瘤耐药细胞U2OS/DOX增殖抑制率显著升高,且具有剂量依赖性(P<0.05)。盐酸罗哌卡因处理的U2OS/DOX细胞中P21、Caspase-3、E-cadherin表达水平显著升高,MMP-2表达水平显著降低,细胞增殖抑制率显著升高,克隆形成数显著降低,细胞凋亡率显著升高,细胞迁移、侵袭数显著降低,Livin表达水平显著降低,且呈浓度依赖性(P<0.05)。过表达Livin部分逆转了盐酸罗哌卡因对细胞U2OS/DOX增殖、迁移、侵袭的抑制作用及凋亡的促进作用。结论:盐酸罗哌卡因能明显抑制对多柔比星具有耐药性的骨肉瘤细胞的增殖,迁移和侵袭,明显促进骨瘤细胞凋亡,其机制可能与Livin有关。  相似文献   

8.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

9.
Tunicamycin, an antimetabolite which inhibits the N-glycosylation of proteins, does not block the initial cleavages of mouse embryos, even at relatively high concentrations. However, it can interfere with compaction and blastocyst formation. Although tunicamycin treatment from the two-cell or eight-cell stage can cause developmental arrest prior to hatching from the zona pellucida, much higher (sublethal) concentrations of the antimetabolite added at the morula or blastocyst stage do not specifically affect hatching of blastocysts, their attachment to the substratum, or outgrowth of trophoblast cells. The consequence of continuous exposure of embryos to moderate amounts (0.05 to 0.1 μg/ml) of tunicamycin through peri-implantation stages is death of trophoblast cells with little effect upon the cells of the inner cell mass (ICM). The latter give rise to apparently normal early endoderm cells in the presence of the antimetabolite. The incorporation of leucine, mannose, and fucose into acid-insoluble material by ICM cells is only minimally inhibited by tunicamycin. On the other hand, the antimetabolite causes a severe inhibition of incorporation of not only mannose, but also leucine, into acid-insoluble material in trophoblast cells. Thus, trophoblast cells resemble transformed cells by their extreme sensitivity to tunicamycin.  相似文献   

10.
Liu F  Wang J  Chang AK  Liu B  Yang L  Li Q  Wang P  Zou X 《Phytomedicine》2012,19(8-9):797-803
In recent years, anti-angiogenic therapy has become an effective strategy for inhibiting tumor growth. Fucoidan is a class of fucose-enriched sulfated polysaccharides found in brown algae, and it is known to have strong anti-tumor property. Using a human umbilical vein endothelial cells (HUVEC)-based cell culture model, the present study investigated the anti-angiogenic activity of fucoidan extracted from the brown seaweed Undaria pinnatifida. Treatment of HUVECs with various concentrations of fucoidan resulted in significant inhibition of cell proliferation, cell migration, tube formation and vascular network formation. However, significant inhibition of cell proliferation only occurred with longer treatment time (48 h instead of 24h or less). About 40% of cell proliferation and cell migration and 61% of tube formation by HUVECs were inhibited by 400 μg/ml fucoidan, the maximum concentration tested. These results appeared to suggest that modulation of angiogenesis by fucoidan might not occur through growth inhibition and apoptosis. Ex vivo angiogenesis assay demonstrated that at 100 μg/ml, fucoidan caused significant reduction in microvessel outgrowth. Western blot and RT-PCR analyses indicated that at 400 μg/ml, fucoidan significantly reduced the expression of the angiogenesis factor VEGF-A in the suppression of angiogenesis activity. Our results showed that fucoidan isolated from U. pinnatifida may have a new therapeutic potential in the prevention angiogenesis-related diseases.  相似文献   

11.
Oviduct tissue slices were incubated with [3H]-leucine or [3H]-mannose in the presence and absence of tunicamycin, a specific inhibitor of lipid-mediated protein glycosylation. Conditions were established where tunicamycin had maximal effect on [3H]-mannose incorporation (greater than 90% inhibition) but a minimal effect on [3H]-leucine incorporation (less than 10% inhibition) into total TCA-insoluble products. Analysis of incubated tissues by SDS-polyacrylamide gel electrophoresis revealed that in the absence of tunicamycin, [3H]-mannose was incorporated into only a few proteins, of which ovalbumin represented the major radiolabeled component. Tunicamycin markedly reduced the incorporation of [3H]-mannose into ovalbumin and other oviduct glycoproteins. In contrast, analysis by SDS-polyacrylamide gel electrophoresis showed that [3H]-leucine was incorporated into a variety of proteins in the absence of tunicamycin. The radioactivity profile of some of these proteins was shifted toward lower Mr when oviduct slices were incubated in the presence of tunicamycin, with only a minimal decrease in protein labeling. Light microscopic autoradiograms of tissue incubated with [3H]-leucine in either the presence or absence of tunicamycin exhibited extensive labeling of tubular gland and epithelial cells. In the absence of tunicamycin, these cell types also become markedly labeled with [3H]-mannose; however, incorporation of label in both cell types was substantially reduced in the presence of tunicamycin. Qualitatively, labeling of tubular gland cells appeared greater than that of epithelial cells, largely due to the concentration of silver grains over the dense population of secretory vesicles in the tubular gland cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Primary cell cultures of African Green monkey kidney (AGMK) contain polarized epithelial cells in which influenza virus matures predominantly at the apical surfaces above tight junctions. Influenza virus glycoproteins were found to be localized at the same membrane domain from which the virus budded. When polarized primary AGMK cells were infected with recombinant SV40 viruses containing DNA coding for either an influenza virus H1 or H2 subtype hemagglutinin (HA), the HA proteins were preferentially expressed at the apical surface in a manner identical to that observed in influenza virus-infected cells. Thus, cellular mechanisms for sorting membrane glycoproteins recognize some structural feature of the HA glycoprotein itself, and other viral proteins are not necessary for this process.  相似文献   

13.
Glucocorticoids and prolactin (PRL) have a direct effect on the formation and maintenance of tight junctions (TJs) in cultured endothelial and mammary gland epithelial cells. In this work, we investigated the effect of a synthetic glucocorticoid dexamethasone (DEX) and PRL on the paracellular barrier function in MDCK renal epithelial cells. DEX (4 microM)+PRL (2 microg/ml) and DEX alone increased significantly the transepithelial electrical resistance after chronic treatment (4 days) of confluent MDCK monolayers or after 24 h treatment of subconfluent monolayers. Immunoblotting and immunocytochemistry revealed no changes in the expression and distribution of TJ-associated proteins occludin, ZO-1 and claudin-1 in confluent monolayers after hormone addition. However, a marked increase in junctional content for occludin and ZO-1 with no changes in their total expression was observed in subconfluent MDCK monolayers 24 h exposed to DEX or DEX+PRL. No change in cell proliferation/growth was detected at subconfluent conditions following hormone treatment. An increase in the total number of viable cells was observed only in confluent MDCK monolayers after exposure to DEX+PRL suggesting that the main effect of these hormones on already established barrier may be associated with the inhibition of cell death. In conclusion, our data suggest that these hormones (specially dexamethasone) have an effect on TJ structure and function only during the formation of MDCK epithelial barrier by probably modulating the localization, stability or assembly of TJ proteins to membrane sites of intercellular contact.  相似文献   

14.
目的:利用不同浓度的桦木酸对人胃癌SGC-7901细胞增殖的影响。方法:桦木酸设4个不同浓度(0、10、20、30 μg/ml),并采用常规化疗药物5-Fu处理作为阳性对照,以探究其对细胞增殖的影响。采用台盼蓝拒染法和吉姆萨染色法分别检测桦木酸对人胃癌SGC-7901细胞生长抑制率及克隆形成率;EdU法检测SGC-7901的细胞增殖;利用流式细胞术检测细胞周期, 应用qRT-PCR和Western blot分别检测细胞周期蛋白cyclin D1,cyclin B1的mRNA和蛋白表达水平。结果:不同浓度的桦木酸处理人胃癌SGC-7901细胞48 h后,其细胞生长抑制率显著升高(P<0.05),克隆形成率和细胞增殖率均明显降低(P<0.01),且呈剂量和时间依赖性;人胃癌SGC-7901细胞被阻滞在G1/G0期,细胞周期蛋白cyclin D1和cyclin B1的mRNA和蛋白表达量也随桦木酸浓度升高而显著降低(P<0.01)。且与5-Fu对照组相比,桦木酸浓度为20 μg/ml和30 μg/ml时,细胞增殖能力明显降低,细胞周期被抑制,细胞周期蛋白表达量均明显降低(P <0.05)。结论:桦木酸通过下调cyclin B1和cyclin D1基因表达,将人胃癌SGC-7901细胞阻滞在G1/G0期,从而抑制细胞增殖。  相似文献   

15.
Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10–100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1–3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1–3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. © 1996 Wiley-Liss, Inc.  相似文献   

16.
目的:探究不同浓度桦木酸对人胃癌MGC-803细胞增殖的影响.方法:将人胃癌MGC-803细胞分成4组,每组设置3个复孔,对照组细胞为加入浓度为0 μg/ml的桦木酸实验组细胞分别加入终浓度为10、20、30 μg/ml的桦木酸,各组细胞在含5%的CO2培养箱中孵育48 h后,使用吉姆萨染色法和台盼蓝拒染法检测桦木酸对...  相似文献   

17.
The mechanisms of action of, and resistance to, the steroidal regulators of normal mammary epithelial and breast cancer cell development are only partially understood. A major obstacle to research progress has been the difficulty in supporting physiologically relevant development of normal mammary epithelial cells (MEC) under defined serum-free conditions. A primary culture system was developed in our laboratory that permits nonfunctional rat MEC to undergo extensive proliferation, functional differentiation, as well as multilobular and lobuloductal branching alveolar morphogenesis. In the studies reported here, the contributions of hydrocortisone and progesterone during the coordinate induction of cellular proliferation, organoid morphogenesis, and functional capacity were assessed. Hydrocortisone (0.1–10 μg/ml) induced alveolar and multilobular branching morphogenesis, suppressed lobuloductal branching morphogenesis, and enhanced casein accumulation. Hydrocortisone also played a role in maintaining alveolar as well as multilobular branching morphogenesis and casein levels. Progesterone (0.01–1 μg/ml) induced cellular proliferation as well as multilobular and lobuloductal branching morphogenesis, and suppressed casein accumulation. At a supraphysiological concentration (10 μg/ml), progesterone inhibited cell growth, alveolar branching morphogenesis, and casein accumulation. MEC cultured without progesterone for up to 1 week retained the ability to respond when subsequently exposed to this steroid. Reversibility studies suggested that progesterone was required for the induction, but not the maintenance of the mitogenic, morphogenic, and lactogenic effects. This physiologically relevant primary culture system can be used to study the factors that regulate steroid responsiveness as well as the cross-talk between steroid and growth factor receptor signaling pathways in normal MEC and breast cancer cells. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.  相似文献   

19.
A coculture system was developed to investigate the interactions between MCF-10A breast epithelial cells and MCF-7 breast cancer cells stably expressing the green fluorescent protein (MCF-7-GFP). Studies with this MCF-10A/MCF-7-GFP coculture system on microtiter plates and on reconstituted basement membrane (Matrigel), revealed paracrine inhibition of MCF-7-GFP cell proliferation. Epidermal growth factor, which in monocultures modestly enhanced MCF-7-GFP and markedly increased MCF-10A cell proliferation, greatly inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures. 17beta-Estradiol, which stimulated MCF-7-GFP but not MCF-10A cell proliferation in monoculture, inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures, an effect that was blocked by the antiestrogen, ICI 182,780. On Matrigel, complex MCF-10A/MCF-7-GFP cellular interactions were observed in real time that resulted in the formation of acinus-like structures. These results indicate a role of normal epithelial cells in inhibiting tumor-cell proliferation and demonstrate the utility of this coculture system as a model of early paracrine control of breast cancer.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2389-2402
Vascular endothelium in vivo appears to function as a polarized epithelium. To determine whether cellular polarity exists at the level of the plasma membrane, we have examined cultured endothelial monolayers for evidence of differential distribution of externally disposed plasmalemmal proteins at apical and basal cell surfaces. Lactoperoxidase beads were used to selectively label the apical surfaces of confluent endothelial monolayers, the total surfaces of nonenzymatically resuspended cells, and the basal surfaces of monolayers inverted on poly-L-lysine-coated coverslips, while maintaining greater than 98% viability in all samples. Comparison of the SDS PAGE radioiodination patterns obtained for each surface revealed a number of specific bands markedly enriched on either apical or basal surface. This polarized distribution involved membrane- associated as well as integral membrane proteins and was observed in several strains of bovine aortic endothelial cells, as well as in both primary and passaged human umbilical vein endothelial cells. In contrast, two morphologically nonpolarized cell types, bovine aortic smooth muscle and mouse peritoneal macrophages, did not display differential localization of integral membrane proteins. Polarized distribution of integral membrane proteins was established before the formation of a confluent monolayer. When inverted (basal-side-up) monolayers were returned to culture, the apical-side-up pattern was reexpressed within a few days. These results demonstrate that cell surface-selective expression of plasmalemmal proteins is an intrinsic property of viable endothelial cells in vitro. This apical/basal asymmetry of membrane structure may provide a basis for polarized endothelial functions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号