首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
125I-labelled α2-macroglobulin-typrin complex (125I-labelled α2-macroglobulin·trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37°C. The association of 0.5 μg/ml 125I-labelled α2-macroglobulin·trypsin was inhibited by unlabelled α2-macroglobulin·trypsin with a half-inhibition constant of about 8 μg/ml (11 nM). 125I-Labelled α2-macrioglubulin became cell-associated to a smaller extent (10–40% of that of α2-macroglobulin·trypsin) and the half-inhibition constant was about 35 μg/ml in adipocytes. The cell associated of 125I-labelled α-macroglobulin·trypsin was markedly inhibited by dansylcadaverin, bacitracin, omission of Ca2+ from the medium or pretreatment of the cell with trypsin. After incubation for 180 min more than 60% of the cell-associated 125-Ilabelled α2-macroglobulin·trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized marterial. 125I-Labelled α2-macroglobulin·trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 μg/ml 125I-labelled α2-macroglobulin was approx. 40% of that of 125I-labelled α2-macroglobulin·trypsin. Degradation of 125I-labelled α2-macroglobulin·trypsin was abolished by a high concentration (0.5 mg/ml) and α2-macroglobulin·trypsin. It is concluded that α2-macroglobulin·trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

2.
The rate of degradation of 125I-labelled [Tyr11]somatostatin by isolated rat hepatocytes was similar to that of unlabelled somatostatin. Reaction was dependent upon cell concentration and temperature, being rapid at 37°C and negligible at 0°C. The apparent Km for the overall degradation process was approximately the same for degradation by hepatocytes and by partially-purified liver plasma membranes. Extracellular breakdown of somatostatin, by proteases released from cells into the incubation medium, represented less than 10% of the cell-associated degradation. Homogenization of hepatocytes resulted in a 10–20-fold increase in the degrading ability of the cells. After incubation of 125I-labelled [Tyr11]somatostatin and 125I-labelled [Tyr1]somatostatin with hepatocytes, 125I-labelled tyrosine was the major radioactive product identified in the incubation medium. The rate of release of 125I-labelled tyrosine from the labelled [Tyr1] analogue was approximately 11 times greater than from the labelled [Tyr11] analogue. 125I-labelled [Tyr11]somatostatin bound to the cells in a non-saturable manner and approx. 70% of the cell-associated radioactivity could be dissociated by dilute acid. The rate of degradation of somatostatin was unchanged by reagents that inhibit the internalisation and lysosomal degradation of polypeptides by cell suspensions but was reduced by reagents that inhibit sulphydryl-dependent proteases. It is proposed that plasma-membrane associated proteolysis, involving both endo- and exopeptidases may represent the predominant degradative pathway of somatostatin in vivo.  相似文献   

3.
Mouse blastocysts, in vitro, endocytosed 100 μg/ml 125I-labelled bovine serum albumin (BSA) at a rate equivalent to 192 ± 27 μl/hr/mg embryonic protein over the first 20 min. Insulin stimulated this initial uptake by 30% (P < 0.05). After this time, accumulation of 125I-labelled BSA began to plateau as the endocytosed 125I-labelled BSA was catabolized and 125I was released from the cells. Insulin caused an ≈?72% (P < 0.05) increase in the amount of uncatabolized 125I-labelled BSA remaining in insulin-treated blastocysts after 2 hr as compared to control blastocysts. Insulin partially inhibited catabolism of endocytosed 125I-labelled BSA during the first 2 hr following transfer to nonradioactive medium. After this time, degradation ceased in both control and insulin-treated blastocysts, leaving a small, uncatabolized protein pool remaining in the embryos; however, as a result of insulin's inhibitory effects on the initial catabolic rate, the uncatabolized protein pool was 30% (P < 0.05) larger in insulin-treated blastocysts after the 4 hr chase. Insulin inhibited endogenous protein degradation in blastocysts by 37% (P < 0.05). Combined with previous studies showing a 90% increase in endogenous protein synthesis in blastocysts following short-term stimulation with insulin (Harvey and Kaye, 1988), these results suggest that insulin acts to increase the endogenous protein-reserves in the embryo. Dose-response studies indicated an EC50 of 0.5 pM for insulin's stimulation of 125I-labelled BSA accumulation, consistent with action via its own receptor. Insulin-like growth factor-1 (IGF-1) also stimulated protein accumulation at concentrations similar to those observed with insulin, suggesting that IGF-1 may act via its own receptor rather than the insulin receptor to exert its effects on endocytosis. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is a most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones at isolated rat hepatocytes, the internalization time course of 125I-insulin and 125I-IGF-I are traced at 37 and 12°C. There are established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37°C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. But essential differences in the internalization course of these two related peptides were obvious at the temperature of 12°C. The internalization level of insulin receptors at 12°C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocyte plasma membrane. At 12°C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12°C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar “inhibition mechanism” of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to action of cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.  相似文献   

5.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

6.
In chicken thymocytes isolated from 15–40 day-old chickens, after a 2 h incubation at 37°C, insulin stimulated amino isobutyric acid uptake (maximal response: 40–50% of increase at 1 μg insulin/ml and half maximal response at 60 ng/ml) by specifically stimulating the influx without altering the efflux. Insulin also stimulated glucose oxidation (maximal response: 11% of increase at 1 μg insulin/ml). Binding of 125I-labelled chicken insulin to thymocytes was rapid and higher at 15°C than at 37°C. At steady state, (90 min at 15°C), chicken, porcine and goose insulins were equipotent in inhibiting the binding of 125I-labelled chicken insulin. Maximal binding capacity was estimated at 1250 pg insulin/108 cells, i.e., 1250 binding sites/cell with an apparent dissociation constant of 200 ng insulin/ml at 15°C. Degradation of 125I-labelled chicken insulin in the incubation medium was negligible at 15°C but very noticeable at 37°C. Therefore, the low level of insulin binding at 15°C reflects a true scarcity of insulin receptors in chicken thymocytes as compared to rat thymocytes.  相似文献   

7.
Isolated muscle cells from adult rat heart were used to investigate the effect of microtubule modifiers on the insulin-receptor interaction in mammalian heart muscle. Preincubation of freshly isolated cells with increasing concentrations of vinblastine resulted in a dose-related inhibition of specific binding of 125I-labelled insulin, whereas colchicine did not affect the binding reaction. Analysis of equilibrium binding data demonstrated a reduction of receptor number after treatment of cells with vinblastine. The dissociable fraction of 125I-labelled insulin specifically bound at equilibrium was significantly reduced by preincubation with vinblastine. The results suggest involvement of microtubules in the insulin-receptor interaction in cardiac muscle.  相似文献   

8.
We studied internalization of 125I-labelled insulin in isolated rat hepatocytes. Using the acidification technique, we were able to dissociate the ligand from its cell-surface receptors, and thus to separate internalized from surface-bound insulin. Because during the first 5 min of incubation of 125I-labelled insulin with freshly isolated hepatocytes there is no loss of internalized label, the ratio of the amount of internalized ligand to the amount of cell-surface-bound ligand may serve as an index of insulin internalization. Within the first 10 min of insulin's interaction with hepatocytes, the plot of the above ratio as a function of time yields a straight line. The slope of this line is referred to as the endocytic rate constant (Ke) for insulin and denotes the probability with which the insulin-receptor complex is internalized in 1 min. At the insulin concentration of 0.295 ng/ml, the Ke is 0.049 min-1. It is independent of insulin concentration until the latter exceeds 1 ng/ml. At the insulin concentration of 3.2 ng/ml, the Ke accelerates to 0.131 min-1. With the Ke being the probability of insulin-receptor-complex internalization, 4.9% of occupied insulin receptors will be internalized in 1 min at an insulin concentration of 0.295 ng/ml, and 13.1% of occupied insulin receptors will be internalized in 1 min at 3.2 ng/ml. When the insulin concentration decreases from 3.2 to 0.3 ng/ml, the Ke decreases accordingly. The half-time of occupied receptor internalization is 15.4 min at the lower insulin concentration and 5.3 min at the higher insulin concentration.  相似文献   

9.
Adult rat heart muscle cells obtained by perfusion of the heart with collagenase have been used to characterize the insulin receptors by equilibrium binding and kinetic measurements. Binding of 125I-labelled insulin to heart cells exhibited a high degree of specificity; it was dependent on pH and temperature, binding at steady increased with decreasing temperatures. About 70% of the radioactivity bound at equilibrium at 25°C could be dissociated by addition of an excess of unlabelled insulin. 54 and 40% of 125I-labelled insulin was degraded by isolated heart cells after 2 h at 37°C and 4 h at 25°C, respectively. This degrading activity was effectively inhibited by high concentration of albumin.Equilibrium binding studies were conducted at 25°C using insulin concentrations ranging from 2.5 · 10?11 mol/l to 10?6 mol/l. Scatchard analysis of the binding data resulted in a curvilinear plot (concave upward), which was further analyzed using the average affinity profile. The empty site affinity constant was calculated to be 9.5 · 107 l/mol with a total receptor concentration of 3.4 · 106 sites per cell.The presence of site-site interactions of the negative cooperative type among the insulin receptors has been confirmed by kinetic experiments. The rate of dilution induced dissociation was enhanced in the presence of native insulin (5 · 10?9 mol/l), both, under conditions of low and high fractional saturation of receptors.  相似文献   

10.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37°C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37°C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20–30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16°C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

11.
Bacitracin (1 mg/ml) markedly increased (approx. 75%) the cell-associated specifically bound 125I-labelled insulin without altering the affinity of the binding sites. Bacitracin also exerted a modest inhibitory effect on the degradation of insulin in the incubation medium determined as radioactivity not precipitated by trichloroacetic acid (from 9.6 to 4.8%). The effect on insulin binding was about 5-times as sensitive as the effect on degradation. The increased binding was due to intracellular accumulation of radioactivity which could not be removed by treating the cells with trypsin. This increase was not seen when the internalization process was reduced by ATP-depletion or low temperature. Since the trypsin-sensitive fraction of cell-associated radioactivity was apparently not altered, it is suggested that bacitracin, in addition to its well-known inhibition of extracellular degradation, also inhibits the intracellular degradation of insulin.  相似文献   

12.
Binding kinetics of porcine 125I-insulin were studied in synaptosomal and microsomal fractions of rat brain cortex. Receptor binding was temperature- and pH-dependent with optimum at 4°C and pH 8.0–8.3. At 15°C, steady state binding was heterogenous, and Scatchard analysis revealed two classes of receptors with Kd of 2 nmol/l and 40 nmol/l in amounts of 50 pmol/g and 200 pmol/g of membrane protein. Dissociation kinetics were biexponential with T12 of about 5 min and 180 min, and in contrast to other cell-types, not influenced by negative cooperativity. No receptor-mediated insulin degradation was detectable at 37°C in the presence of bacitracin. Insulin analogues inhibited 125I-insulin binding with potencies relative to porcine insulin (%): human insulin 100, rat insulin (I+II) 71, coypu insulin 47, rat multiplication stimulating activity 8, porcine proinsulin 5, among which the three last values were significantly higher than in rat liver and fat cells. No competition was observed with porcine relaxin and mouse nerve growth factor up to about 1 μmol/l. Receptors were present in all regions of central nervous system with highest concentrations in the cerebral cortex, cerebellum and olfactory bulb, and lowest in the pons, medulla oblongata and spinal cord. In conclusion, insulin receptors in rat brain cortex are functionally different from other tissues regarding the insulin specificity and the absence of negative cooperativity. It is suggested that an insulin receptor subtype in rat brain mediates the growth activity of insulin on nerve cells.  相似文献   

13.
Insulin-stimulated glycogenesis and insulin degradation were studied simultaneously at 37 degrees C in cultured foetal hepatocytes grown for 2-3 days in the presence of cortisol. Degradation of cell-associated insulin, as measured by trichloroacetic acid precipitation, was significant after 4 min in the presence of 1-3 nM-125I-labelled insulin. This process became maximal (30% of insulin degraded) after 20 min, a time when binding-state conditions were achieved. No insulin-degradative activity was detected in a medium that had been exposed to cells. At steady-state, the appearance of insulin degradation products in the medium was linearly dependent on time (1.5 fmol/min per 10(6) cells at 1nM-125I-labelled insulin). Chloroquine (3-50 microM), bacitracin (0.1-10 mM) and NH4Cl (1-10 mM) inhibited insulin degradation as soon as this became detectable and caused an increase in the association of insulin to hepatocytes after 20 min. Lidocaine and dansylcadaverine had similar effects, whereas N-ethylmaleimide, aprotinin, phenylmethanesulphonyl fluoride and leupeptin were found to be ineffective. Chloroquine, and also bacitracin, at concentrations that inhibited insulin degradation, decreased the insulin-stimulated incorporation of [14C]glucose into glycogen over 2 h. This effect of chloroquine was specific, since it did not modify the basal glycogenesis, or the glycogenic effect of a glucose load in the absence of insulin. It therefore appears that the receptor-mediated insulin degradation (or some associated pathway) is functionally related to the glycogenic effect of insulin in foetal hepatocytes.  相似文献   

14.
Native insulin inhibits the binding and degradation of 125I-labelled insulin in parallel. Half-maximal inhibition of degradation occurs with 10nm-insulin, a hormone concentration sufficient to saturate the insulin receptor. The proportion of bound hormone that is degraded increases as the insulin concentration is increased, suggesting that low-affinity uptake is functionally related to degradation. Since only a small fraction (approx. 10%) of the overall degradation occurs at the plasma membrane, or in the extracellular medium, translocation of bound hormone into the cell is the predominant mechanism mediating the degradation of insulin. In the presence of 0.6nm-insulin, a concentration at which most cell-associated hormone is receptor-bound, chloroquine increases the amount of 125I-labelled insulin retained by hepatocytes. However, chloroquine increases the retention of degradation products of insulin in incubations containing sufficient hormone (6nm) to saturate the receptor and permit occupancy of low-affinity sites. Glucagon does not compete for the interaction of 125I-labelled insulin (1nm) with the insulin receptor. In contrast, 20μm-glucagon inhibits 75% of the uptake of insulin (0.1μm) by low-affinity sites. A fraction of the cell-bound radioactivity is not intact insulin throughout a 90min association reaction at 37°C. During dissociation, fragments of 125I-labelled insulin are released to the medium more rapidly than is intact hormone. The production and transient retention of degradation products of the hormone complicates the characterization of the insulin receptor by equilibrium or kinetic methods of assay. It is proposed that insulin degradation occurs by receptor- and non-receptor-mediated pathways. The latter may be related to the action of glutathione–insulin transhydrogenase, with which both insulin and glucagon interact.  相似文献   

15.
We have investigated the binding and internalization of α2-macroglobulin and serum albumin by human placental syncytiotrophoblast cells in vitro. The time course (obtained at 4°C) of α2-macroglobulin binding indicated that an equilibrium was reached after 4 h. The binding of 125I-labelled α2-macroglobulin to syncytiotrophoblast cells was competitively reduced in the presence of excess unlabelled α2-macroglobulin. When the concentration-dependence of binding was examined over a wide concentration range, non-linear regression analysis yielded a Kd of 6.4 nM. In the case of albumin, binding was weak and ligand dissociated from the cell surface during aqueous washing making it impractical to analyze the binding reaction. In other experiments, syncytiotrophoblast cells were incubated with 125I-labelled α2-macroglobulin at 37°C. Under these conditions, trypsin-resistant cell-associated radioactivity increased with time consistent with ligand internalization. 125I-Labelled-ligand was internalized with a t1/2 of about 5 min. After a lag period some radioactivity was released back into the incubation medium. When measured at times up to 210 min, this was found to consist of mostly TCA-precipitable material that had been lost from the cell surface. However, when the incubation was extended to 24 h, almost 15% of the initial cell-associated radioactivity was released to the extracellular medium as TCA-soluble material, consistent with a slow rate of ligand degradation. The specific binding of 65Zn-labelled α2M was similar to that of the 125I-labelled ligand and trypsin-resistance measurements provided evidence of α2M-mediated 65Zn uptake. These results support a role for syncytiotrophoblast in the metabolism of α2-macroglobulin during pregnancy and are also consistent with a role for α2-macroglobulin in the maternal-fetal transport of zinc. J. Cell. Biochem. 68:427–435, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
One of determining conditions of formation in vertebrate phylogenesis of hormonal systems of insulin and IGF-I—peptides common by origin, similar by structure and by biological action is temperature factor. In differentiation of functional roles of two related hormones an important place is ascribed to mechanism of their intracellular action. Study of formation of the two hormonal systems in vertebrate phylogenesis necessitates knowledge of peculiarities of internalization of two related hormones in mammals. On isolated rat hepatocytes at the identical maximal level of internalization of I25I-insulin and 125I-IGF-I there are revealed marked differences of dynamics of their internalization. Besides, at internalization of 125I-insulin or of 125I-IGF-I, their peculiar distribution was observed in the cell and on the plasma membrane. At 37°C, only two thirds of 125I-insulin relatively bound to receptors on the membrane were immersed into cell, whereas the portion of internalized 125I-IGF-I turned out to be higher than the part located on the membrane. At 12°C, a decrease of 125I-insulin inside the cell and its increase on the membrane indicated the interdependent label redistribution under these conditions. The form of the 125I-IGF-I distribution at low temperature remained unchained. The pattern of established differences of internalization of 125I-insulin and 125I-IGF-I as well as different sensitivity of each of the processes to low temperature indicated that each of the peptides triggered individual mechanism of endocytosis of receptors. The high sensitivity of internalization of 125I-insulin to low temperature and the temperature lability of the process in isolated rat hepatocytes agree with the earlier suggestion about the late formation of the regulatory insulin system in homoiothermal vertebrates.  相似文献   

17.
125I-Labelled alpha 2-macroglobulin-trypsin complex (125I-labelled alpha 2-macroglobulin X trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37 degrees C. The association of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin X trypsin was inhibited by unlabelled alpha 2-macroglobulin X trypsin with a half-inhibition constant of about 8 micrograms/ml (11 nM). 125I-Labelled alpha 2-macroglobulin became cell-associated to a smaller extent (10-40% of that of alpha 2-macroglobulin X trypsin) and the half-inhibition constant was about 35 micrograms/ml in adipocytes. The cell association of 125I-labelled alpha 2-macroglobulin X trypsin was markedly inhibited by dansylcadaverine, bacitracin, omission of Ca2+ from the medium or pretreatment of the cells with trypsin. After incubation for 180 min more than 60% of the cell-associated 125I-labelled alpha 2-macroglobulin X trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized material. 125I-Labelled alpha 2-macroglobulin X trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin was approx. 40% of that of 125I-labelled alpha 2-macroglobulin X trypsin. Degradation of 125I-labelled alpha 2-macroglobulin X trypsin was abolished by a high concentration (0.5 mg/ml) of alpha 2-macroglobulin X trypsin. It is concluded that alpha 2-macroglobulin X trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

18.
19.
Insulin receptors of Fao hepatoma cells were labelled with a 125I-labelled photoreactive insulin analogue or by surface iodination catalysed by lactoperoxidase. Cells were then incubated at 37 degrees C, and the cellular localization of the labelled receptors was assessed by limited exposure of intact cells to trypsin. The results show that: (1) photolabelled insulin-receptor complexes are internalized and recycled in Fao hepatoma cells; (2) the dynamics of photolabelled insulin receptors (internalization and recycling) is similar before and after down-regulation; (3) the unoccupied receptors labelled by surface iodination are internalized and recycled similarly to covalent insulin-receptor complexes; (4) insulin does not induce internalization of surface-iodinated insulin receptors. We conclude that internalization and recycling of insulin receptors are independent of receptor occupancy by insulin in Fao hepatoma cells.  相似文献   

20.
We compared A-14 and A-19 125I-labelled insulin in receptor-binding and degradation. Percent receptor-binding of A-14 and A-19 125I-labelled insulin to 2.4 X 10(9)/ml erythrocytes after 210 min incubation at 15 degrees C was 7.8 and 4.9%, respectively. Percent insulin-receptor binding of A-14 insulin was 1.6 times greater than that of A-19 insulin. A similar result was obtained in an adipocytes insulin binding study. Percent receptor-binding of A-14 and A-19 insulin to 2 X 10(5)/ml fat cells after 30 min incubation in the above buffer was 3.9 and 2.4%, respectively. Degradation of A-14 and A-19 insulin in rat adipocytes was also studied by molecular sieve column chromatography. Isolated rat adipocytes were allowed to associate with A-14 and A-19 125I-insulin for 60 min at 37 degrees C, pH 8.0 in a HEPES-phosphate buffer, and then cells were separated from the buffer by centrifugation. After solubilization with triton X-100, both the solubilized cells and the incubation medium were applied to the Bio-Gel P-30 column to assess the insulin degradation. Degradation of A-14 125I-insulin by the isolated rat adipocytes was 1.6 times greater than that of A-19 125I-insulin. Furthermore, the peak which was thought to be intermediate degradation products of insulin was obtained between the peak of intact insulin and that of 125I-tyrosine. Such a peak of intermediates was much smaller in the incubation media than in the cell-associated materials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号