首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang H  Ran X  Hu CL  Qin LP  Lu Y  Peng C 《PloS one》2012,7(2):e31157
Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from an overproduction of fibroblasts and excessive deposition of collagen. Although treatment with surgical excision or steroid hormones can modify the symptoms, numerous treatment-related complications have been described. In view of this, we investigated the therapeutic effects of essential oil (EO) from rhizomes of Ligusticum chuanxiong Hort. (Umbelliferae) on formed hypertrophic scars in a rabbit ear model. EO was prepared as a liposomal formulation (liposome-enveloped essential oil, LEO) and a rabbit ear model with hypertrophic scars was established. LEO (2.5, 5, and 10%) was applied once daily to the scars for 28 days. On postoperative day 56, the scar tissue was excised for masson's trichrome staining, detection of fibroblast apoptosis, assays of the levels of collagens I and III, and analysis of the mRNA expression of matrix metalloproteinase-1 (MMP-1), caspase-3 and -9, and transforming growth factor beta 1 (TGF-β(1)). In addition, the scar elevation index (SEI) was also determined. As a result, LEO treatment significantly alleviated formed hypertrophic scars on rabbit ears. The levels of TGF-β(1), MMP-1, collagen I, and collagen III were evidently decreased, and caspase -3 and -9 levels and apoptosis cells were markedly increased in the scar tissue. SEI was also significantly reduced. Histological findings exhibited significant amelioration of the collagen tissue. These results suggest that LEO possesses the favorable therapeutic effects on formed hypertrophic scars in the rabbit ear model and may be an effective cure for human hypertrophic scars.  相似文献   

2.
Effect of Mederma on hypertrophic scarring in the rabbit ear model   总被引:11,自引:0,他引:11  
Saulis AS  Mogford JH  Mustoe TA 《Plastic and reconstructive surgery》2002,110(1):177-83; discussion 184-6
Currently accepted conservative treatments of hypertrophic scars are limited to steroid injections, radiation therapy, and silicone occlusive therapy. However, the use of Mederma for these problematic lesions has become quite prevalent in the clinical setting. Little scientific evidence exists to support the efficacy of this product in reducing hypertrophic scars. The aim of this study was to study the effects of Mederma on hypertrophic scars in the rabbit hypertrophic scar model, allowing the histologic quantification of scar elevation, dermal collagen organization, vascularity, and inflammation and the gross examination of scar erythema. Full-thickness wounds down to cartilage, four per ear, were created in four New Zealand White rabbits, for a total of 32 scars. Twenty-eight days after the initial wounding, the hypertrophic scars were photographed, and treatment of half of the scars on each ear was begun with Mederma three times per day for a total of 4 weeks. The untreated scars served as control scars and were left exposed to air. After 4 weeks of treatment, the scars were once again photographed. The rabbits were then killed, and the scars were analyzed histologically. The pretreatment and posttreatment photographs were compared by using computer quantification of magenta, yellow, and cyan expression within the scars.Histologic analysis demonstrated no significant reduction in scar hypertrophy or scar elevation index. However, a significant improvement in dermal collagen organization was noted on comparing Mederma-treated scars with untreated control scars (p < 0.05). No significant difference in dermal vascularity or inflammation was noted. Computer analysis of the scar photographs demonstrated no significant reduction in scar erythema with Mederma treatment. The active product in Mederma, allium cepa, has as its derivative quercetin, a bioflavonoid noted for its antiproliferative effects on both normal and malignant cells, and its antihistamine release effects. These properties could theoretically prove beneficial in reversing the inflammatory and proliferative responses noted in hypertrophic scars. Despite the authors' inability to demonstrate a reduction in scar hypertrophy, the improvement in collagen organization noted in the Mederma-treated scars suggests it may have an effect on the pathophysiology of hypertrophic scar formation.  相似文献   

3.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

4.
During wound healing, myofibroblasts play a central role in matrix formation and wound contraction. At the end of healing, there is evidence that myofibroblasts disappear via apoptotic pathways. Hypertrophic scars are a fibroproliferative disorder that leads to considerable morbidity. It has been postulated that a defect in myofibroblast apoptosis could be responsible for the pathological scar formation, but no evidence exists. We have isolated and cultured human normal wound (Wmyo) and hypertrophic scar (Hmyo) myofibroblasts and compared their basal apoptotic rates and their sensitivity to serum starvation and Fas antibody-induced apoptosis to that obtained for dermal fibroblasts (Fb). A higher rate of apoptosis as evidenced by morphological criteria and a propidium iodide assay was observed for Wmyo in comparison to Fb and Hmyo. These results came along with a low level of the anti-apoptotic proteins Bcl-2 and Bclx(L) in Wmyo, whereas there was an increase in the level of the pro-apoptotic molecule Bax when compared to the results obtained for Fb and Hmyo. Hmyo showed a higher level of Bcl-2 compared to Fb but no difference in the Bax or Bclx(L) level. After serum starvation, Wmyo revealed an increased apoptotic rate, whereas Hmyo and Fb did not show any difference. Anti-Fas treatment did not modify the levels of apoptosis but strongly increased the cell growth of Hmyo as compared to Wmyo. This is the first study presenting a broad vision of the apoptotic sensitivity of normal and pathological myofibroblasts. These results confirmed the hypothesis of defects in apoptosis and growth during pathological scar formation impeding myofibroblast disappearance at the end of healing.  相似文献   

5.
Abnormal cutaneous wound healing can lead to formation of fibrotic hypertrophic scars. Although several clinical risk factors have been described, the cross‐talk between different cell types resulting in hypertrophic scar formation is still poorly understood. The aim of this in vitro study was to investigate whether endothelial cells (EC) may play a role in skin fibrosis, for example, hypertrophic scar formation after full‐thickness skin trauma. Using a collagen/elastin matrix, we developed an in vitro fibrosis model to study the interaction between EC and dermal fibroblasts or adipose tissue‐derived mesenchymal stromal cells (ASC). Tissue equivalents containing dermal fibroblasts and EC displayed a normal phenotype. In contrast, tissue equivalents containing ASC and EC displayed a fibrotic phenotype indicated by contraction of the matrix, higher gene expression of ACTA2, COL1A, COL3A, and less secretion of follistatin. The contraction was in part mediated via the TGF‐β pathway, as both inhibition of the ALK4/5/7 receptors and the addition of recombinant follistatin resulted in decreased matrix contraction (75 ± 11% and 24 ± 8%, respectively). In conclusion, our study shows that EC may play a critical role in fibrotic events, as seen in hypertrophic scars, by stimulating ASC‐mediated matrix contraction via regulation of fibrosis‐related proteins.  相似文献   

6.
Soft-tissue dermal loss does not regenerate; instead, it is replaced with scar. The extent of scarring is directly related to the severity of tissue loss (in terms of volume and depth). Commonly, an acute dermal loss will heal with excessive scar, hypertrophic scar. A hypertrophic scar is elevated but is contained within the boundaries of the initial injury. Hypertrophic scars have a reddish appearance, indicating an elevated local circulation. A laser Doppler blood flow monitor was employed to measure blood flow changes in healed wounds. It was speculated that local circulation in a developing hypertrophic scar would be elevated. Patients with recently healed wound sites were monitored and exhibited an average blood flow reading of 365 +/- 325 mV (n = 131). This average value, ranging from 98 to 1450 mV, was 18 times greater than the average reading from normal skin, which was 43 +/- 13 mV (n = 212). Blood flow declined to 32 +/- 21 mV (n = 7) at 16 to 18 weeks (74 percent of normal skin values) in healed wounds that developed normal scar. However, a closed wound that developed into a hypertrophic scar had a blood flow reading of 148 +/- 78 mV (n = 59) at 16 to 18 weeks. This value was three times greater than in normal skin and four times greater than in normal scar. At 38 to 50 weeks postinjury, hypertrophic scar remained elevated (102 +/- 34 mV; n = 10). Hypertrophic scars sustain an elevated blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Dysregulated wound healing after burn injury frequently results in debilitating hypertrophic scarring and contractures. Myofibroblasts, the main effector cells for dermal fibrosis, develop from normal fibroblasts via transforming growth factor beta 1 (TGF-β1). During wound healing, myofibroblasts produce extracellular matrix (ECM) proteins, modulate ECM stability, and contract the ECM using alpha smooth muscle actin (α-SMA) in contractile stress fibers. The antifibrotic pirfenidone has previously been shown to inhibit the initial differentiation of fibroblasts into myofibroblasts in vitro and act as a prophylactic measure against hypertrophic scar development in a mouse burn model. To test whether pirfenidone affects differentiated myofibroblasts, we investigated the in vitro effects of pirfenidone treatment after three to five days of stimulation with TGF-β1. In assays for morphology, protein and gene expression, and contractility, pirfenidone treatment produced significant effects. Profibrotic gene expression returned to near-normal levels, further α-SMA protein expression was prevented, and cell contraction within a stressed collagen matrix was reduced. These in vitro results promote pirfenidone as a promising antifibrotic agent to treat existing scars and healing wounds by mitigating the effects of differentiated myofibroblasts.  相似文献   

8.
BackgroundBasic fibroblast growth factor (bFGF) is a member of the fibroblast growth factor family that has effects on wounding healing and neuro-protection. However, it is difficult to use bFGF to treat diseases that are separated by physiological barriers, such as the dermal barrier and blood brain barrier.Conclusions/SignificanceWe have successfully expressed and purified a TAT-rhbFGF fusion protein in this study. Our results have shown that the fusion protein had a greater ability to penetrate the dermal skin layer. TAT-rhbFGF improved the physical appearance of hypertrophic scars. TAT-rhbFGF may be a potential fusion protein in the treatment of dermal disorders, including hypertrophic scar.  相似文献   

9.
Skin defects left after excision of hypertrophic scars were treated with a dermal substitute and split-thickness skin grafts transplanted after vascularisation of the substitute. The used substitute was a synthetic porous scaffold made from the biodegradable copolymer polyethyleneglycol-terephtalate and polybuthylene-terephtalate. The study was designed to assess the rate of granulation tissue formation, graft take, and after 3 and 12 months the quality of life (pain, comfort of treatment, cosmetic or functional nuisance), scar formation and wound contraction. In addition, scaffold biodegradation and scar tissue formation were evaluated histologically. Seven patients with different causes of burn injury were enrolled, of which 5 completed the study. In the first 4 patients the time between scaffold application and split-thickness skin overgrafting was in between 17 and 24 days. The time point of overgrafting was significantly reduced to 10–12 days by meshing of the dermal scaffold as evidenced in the last 3 patients. Histological evaluation at 3 months revealed normal generation of dermal tissue, however, the collagen bundles were parallel organized like in scar tissue. In the deeper layers of the neodermis, fragments of the dermal substitute were present, causing a mild inflammatory response. One year post-treatment, some fragments of the copolymer were still observed. The extent of wound contraction after successful overgrafting ranged from 30% to 57% after 1 year. All 5 patients showed an improvement in the total Vancouver Scar Score compared to the value before scar removal being similar to what can be expected when treated with split-thickness skin grafts alone. No unanticipated adverse effects due to application of the substitute were observed. We conclude that although this synthetic dermal substitute can be safely used in humans, the presence of 3D dermal template in a full-thickness skin defect will not automatically improve the skin tissue regeneration process or inhibit wound contraction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.

We consider a one-dimensional morphoelastic model describing post-burn scar contraction. Contraction can lead to a limited range of motion (contracture). Reported prevalence of burn scar contractures are 58.6% at 3–6 weeks and 20.9% at 12 months post-reconstructive surgery after burns. This model describes the displacement of the dermal layer of the skin and the development of the effective Eulerian strain in the tissue. Besides these components, the model also contains components that play a major role in the skin repair after trauma. These components are signaling molecules, fibroblasts, myofibroblasts, and collagen. We perform a sensitivity analysis for many parameters of the model and use the results for a feasibility study. In this study, we test whether the model is suitable for predicting the extent of contraction in different age groups. To this end, we conduct an extensive literature review to find parameter values. From the sensitivity analysis, we conclude that the most sensitive parameters are the equilibrium collagen concentration in the dermal layer, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. Further, although we can use the model to simulate significant distinct contraction densities in different age groups, our results differ from what is seen in the clinic. This particularly concerns children and elderly patients. In children we see more intense contractures if the burn injury occurs near a joint, because the growth induces extra forces on the tissue. Elderly patients seem to suffer less from contractures, possibly because of excess skin.

  相似文献   

11.
Hypertrophic scars result from a dysregulated process in wound healing. Although the basic mechanism is unclear, increased proliferation and decreased cell apoptosis are noticed in the development of hypertrophic scar. In previous study, we found that secreted frizzled-related protein 2 (SFRP2), which was associated with cell proliferation, apoptosis, and differentiation, was dramatically upregulated in hypertrophic scar (HS) tissue. In this study short hairpin RNA (shRNA) targeting SFRP2 was employed to characterize SFRP2 function in hypertrophic scar-derived fibroblasts (HSFb). Cell proliferation was assessed by MTT, dynamic growth curves, and BRDU assays. Meanwhile, Cell apoptosis was detected using fluorescence-activated cell sorting (FACS). Caspase-3 activity was assayed by spectrophotometry. Fibroblast populated collagen lattice (FPCL) model was employed to evaluate the contractility of HSFb. Further, real-time PCR and western blot were used to measure the mRNA and protein expressions of α-SMA in HSFb. In addition, mRNA levels of type I and III procollagen were assayed by quantitative real-time PCR. The results revealed that shRNA targeting SFRP2 significantly promoted the apoptosis of HSFb, while it had no effect on the cell proliferation. Decreased synthesis of a-smooth muscle actin (α-SMA) in HSFb and reduced contraction of fibroblasts in the FPCL model were observed. Quantitative RT-PCR suggested that the mRNAs of type I and III procollagen were significantly downregulated. In conclusion, as a novel anti-apoptosis gene, SPRP2 was present in hypertrophic scars. Importantly, shRNA targeting SFRP2 may provide a new approach to preventing the formation of HS.  相似文献   

12.
目的:探讨wnt5a在增生性瘢痕中的表达及其临床意义。方法:选择12例增生性瘢痕患者,术中取成熟期增生性瘢痕6份,增殖期增生性瘢痕6份,正常皮肤组织6份。光镜下观察其形态学的差异,通过免疫组化技术检测和比较其Wnt5a阳性表达的细胞面积率。结果:与正常皮肤相比,增殖期增生性瘢痕中有大量的成纤维细胞,胶原纤维含量丰富,且排列紊乱,其间有大量的炎性细胞,成熟期增生性瘢痕也含有丰富的成纤维细胞和胶原,但炎性细胞很少。增殖期增生性瘢痕和成熟期增生性瘢痕组织中真皮浅层和真皮深层Wnt5a阳性表达的细胞面积率均显著高于正常皮肤组织(P〈0.05),且增殖期增生性瘢痕组织中wnt5a阳性表达的细胞面积率显著高于成熟期增生性瘢痕(P〈0.05)。但正常皮肤组织、成熟期增生性瘢痕、增殖期增生性瘢痕各组间真皮浅层与真皮深层Wnt5a阳性表达的细胞面积率比较均无显著性差异(P〉0.05)。结论:Wnt5a的表达上调可能在增生性瘢痕的形成中起重要作用,并可能与增生性瘢痕的增殖活性有关。  相似文献   

13.
Hypertrophic scars (HTS) and keloids are challenging problems. Their pathogenesis results from an overproduction of fibroblasts and excessive deposition of collagen. Studies suggest a possible anti-scarring effect of basic fibroblast growth factor (bFGF) during wound healing, but the precise mechanisms of bFGF are still unclear. In view of this, we investigated the therapeutic effects of bFGF on HTS animal model as well as human scar fibroblasts (HSF) model. We show that bFGF promoted wound healing and reduced the area of flattened non-pathological scars in rat skin wounds and HTS in the rabbit ear. We provide evidence of a new therapeutic strategy: bFGF administration for the treatment of HTS. The scar elevation index (SEI) and epidermal thickness index (ETI) was also significantly reduced. Histological reveal that bFGF exhibited significant amelioration of the collagen tissue. bFGF regulated extracellular matrix (ECM) synthesis and degradation via interference in the collagen distribution, the α-smooth muscle actin (α-SMA) and transforming growth factor-1 (TGF-β1) expression. In addition, bFGF reduced scarring and promoted wound healing by inhibiting TGFβ1/SMAD-dependent pathway. The levels of fibronectin (FN), tissue inhibitor of metalloproteinase-1 (TIMP-1) collagen I, and collagen III were evidently decreased, and matrix metalloproteinase-1 (MMP-1) and apoptosis cells were markedly increased. These results suggest that bFGF possesses favorable therapeutic effects on hypertrophic scars in vitro and in vivo, which may be an effective cure for human hypertrophic scars.  相似文献   

14.
Postburn hypertrophic scar commonly occurs among the Chinese resulting from serious burn injuries. A non-invasive method of preventing and controlling such scars is using pressure therapy. Its mechanical properties are used as a quantitative indicator for scar assessment and maturation. The non-linear properties of the skin tissue are characterised in this study by a modulus of elasticity and a percentage extension (strain) at load intensities of 20, 40 and 100 g. The latter is a measure of the scar extensibility while the former the scar stiffness. A correlation is obtained between the clinical scar grading and these mechanical properties. Altogether 300 individual measurements were made on fifteen Chinese patients of ages ranging from 18 to 44 with burn injuries of superficial to whole skin thickness burns which necessitated surgical graft procedures. This in vivo study of the mechanical properties of hypertrophic scar tissue lasted 2 yr.  相似文献   

15.
Keloid disease and hypertrophic scars are dermal tumors that are often familial and typically occur in certain races. Their exact etiology is still unknown. Transforming growth factor beta1 (TGF-beta1) plays a central role in wound healing and fibrosis and has been implicated in the pathogenesis of keloid disease and hypertrophic scar. The aims of this study were to measure the plasma level of TGF-beta1 in patients compared with controls, and to investigate the association of five common single nucleotide polymorphisms in TGF-beta1 with the risk of keloid disease and hypertrophic scar formation. Platelet-poor plasma levels of TGF-beta1 in 60 patients (15 with hypertrophic scar and 45 with keloid disease) and 18 controls were measured using an enzyme-linked immunoabsorbent assay technique. A polymerase chain reaction-restriction fragment length polymorphism method was used for genotyping TGF-beta1 polymorphisms. DNA samples from 133 patients (101 with keloid disease and 32 with hypertrophic scar) and 200 controls were examined. All patients and controls were Caucasians of Northern European extraction. There was no statistically significant difference in TGF-beta1 plasma levels between patients with keloid disease and hypertrophic scar and controls. There was also no statistically significant difference in genotype or allele frequency distributions between patients and controls for codons 10, 25, and 263 and for -509 and -800 single nucleotide polymorphisms of the TGF-beta1 gene. These results suggest that TGF-beta1 plasma levels and common polymorphisms are not associated with a risk of keloid disease and hypertrophic scar formation. This lack of association may be significant in view of the importance attached to the role of TGF-beta1 in dermal scarring. To the authors' knowledge, this is the first report of a case-control association study in keloid disease and hypertrophic scars using any single nucleotide polymorphisms.  相似文献   

16.
The use of dermal micrografts to camouflage cleft lip scars is a simple and effective method. We have used dermal micrografts, some hairbearing, to camouflage hypopigmented scars in 10 patients. This method improves the color of the scar, corrects wound distortion and direction to a certain degree, and enables the resultant scar to blend into the adjacent tissue more naturally. Unlike with other methods of scar revision, additional tissue is not sacrificed and new incision lines are not created.  相似文献   

17.
The migration of epithelial cells from dermal appendages toward the wound surface is essential for re-epithelialization of partial thickness burn injuries. This study provides evidence that these cells in vivo synthesize a mitogenic and fibrogenic factor, insulin-like growth factor-1 (IGF-1), which may promote the development of the post-burn fibroproliferative disorder, hypertrophic scarring (HSc). An evaluation of 7 post-burn hypertrophic scars, 7 normal skin samples obtained from the same patients and 4 mature scars revealed that IGF-1 expressing cells from the disrupted sweat glands tend to reform small sweat glands of 4-10 cells/gland in post-burn HSc. The number of these cells increases with time and the glands become larger in mature scar. Other epithelial cells such as those found in sebaceous glands and basal and suprabasal keratinocytes, also express IGF-1 protein and mRNA as detected by Northern and RT-PCR analysis of RNA obtained from whole skin and separated epidermis and dermis. However, cultured keratinocytes did not express mRNA for IGF-1. Histological comparisons between normal and HSc sections show no mature sebaceous glands in dermal fibrotic tissues but the number of IGF-1 producing cells including infiltrated immune cells was markedly higher in the dermis of hypertrophic scar tissues relative to that of the normal control. In these tissues, but not in normal dermis, IGF-1 protein was found associated with the extracellular matrix. By in situ hybridization, IGF-1 mRNA was localized to both epithelial and infiltrated immune cells. Collectively, these findings suggest that in normal skin, fibroblasts have little or no access to diffusible IGF-1 expressed by epithelial cells of the epidermis, sweat and sebaceous glands; while following dermal injury when these structures are disrupted, IGF-1 may contribute to the development of fibrosis through its fibrogenic and mitogenic functions. Reformation of sweat glands during the later stages of healing may, therefore, limit this accessibility, and lead to scar maturation.  相似文献   

18.

Background

Hypertrophic scars are pathologic proliferations of the dermal skin layer resulting from excessive collagen deposition during the healing process of cutaneous wounds. Current research suggests that the TGF-β/Smad signaling pathway is closely associated with normal scar and hypertrophic scar formation. TRAP-1-like protein (TLP), a cytoplasmic protein, has been reported to efficiently regulate Smad2- and Smad3-dependent signal expression in the TGF-β pathway. The relationship between TLP and Type I/III collagen (Col I/III) synthesis explored in the present study provides an effective target for wound healing and gene therapy of hypertrophic scarring.

Objective

To investigate the effects of TLP on collagen synthesis in human dermal fibroblasts.

Methods

Lentiviral vectors encoding TLP was constructed to transfect fibroblasts derived from normal human skin. The expression of Col I/III and phosphorylation of Smad2 and Smad3 in fibroblasts were examined after TLP treatment. In addition, the comparison of TLP expression in normal skin tissues and in hypertrophic scar tissues was performed, and the effect of TLP on cell viability was analyzed by MTT assay.

Results

TLP expression in hypertrophic scar tissue was markedly higher than in normal skin tissue. The Real Time PCR and Western blot test results both revealed that the synthesis of Col I/III was positively correlated with the expression of TLP. TLP also facilitate Smad2 phosphorylation while, conversely, inhibiting Smad3 phosphorylation. TLP may play a cooperative role, along with the cytokine TGF-β1, in improving the overall cell viability of skin fibroblasts.

Conclusions

TLP likely acts as a molecular modulator capable of altering the balance of Smad3- and Smad2-dependent signaling through regulation of phosphorylation, thus facilitating collagen synthesis in fibroblasts. Based on genetic variation in TLP levels in different tissues, these results suggest that TLP plays a key role in the process of TGF-β1/Smad3 signaling that contributes to wound healing and genesis of pathologic scars.  相似文献   

19.
A continuum hypothesis-based model is developed for the simulation of the (long term) contraction of skin grafts that cover excised burns in order to obtain suggestions regarding the ideal length of splinting therapy and when to start with this therapy such that the therapy is effective optimally. Tissue is modeled as an isotropic, heterogeneous, morphoelastic solid. With respect to the constituents of the tissue, we selected the following constituents as primary model components: fibroblasts, myofibroblasts, collagen molecules, and a generic signaling molecule. Good agreement is demonstrated with respect to the evolution over time of the surface area of unmeshed skin grafts that cover excised burns between outcomes of computer simulations obtained in this study and scar assessment data gathered previously in a clinical study. Based on the simulation results, we suggest that the optimal point in time to start with splinting therapy is directly after placement of the skin graft on its recipient bed. Furthermore, we suggest that it is desirable to continue with splinting therapy until the concentration of the signaling molecules in the grafted area has become negligible such that the formation of contractures can be prevented. We conclude this study with a presentation of some alternative ideas on how to diminish the degree of contracture formation that are not based on a mechanical intervention, and a discussion about how the presented model can be adjusted.  相似文献   

20.
During wound healing, the transition from granulation to scar tissue shows a decrease in myofibroblast cellularity. Previous results have correlated the disappearance of these cells with the induction of apoptotic cell death by some unknown stimuli. In contrast, hypertrophic scar appearance after wound healing is thought to be linked to a disorder of apoptotic function which induces myofibroblast persistence in granulation tissue. Oxidative stress being an important mediator of apoptosis, we have evaluated the apoptotic response of normal and pathological wound myofibroblasts (WMyo and HMyo respectively) in their interaction with two oxidative stress inducers: hydrogen peroxide, using a high concentration as a single dose, and sodium ascorbate which induced a continuous release of H2O2 at a low concentration. Our results showed that, according to the H2O2 treatment type, HMyo were more sensitive (after ascorbate treatment) or less sensitive (after H2O2 treatment) when compared to WMyo and Fb. We next assessed the presence of several molecules known to be involved in the antioxidant network protecting cells against H2O2 injury and found HMyo to have a higher level of activity of glutathione peroxidase and a lower level of activity of catalase than WMyo. These results can help explain the contradictory responses of myofibroblasts according to the oxidative stress treatment. This is the first study linking refractory oxidative stress mediated cell death to cellular phenotype in hypertrophic myofibroblasts, and indicates a pivotal role for the antioxidant enzyme system in this type of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号