首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomechanics and Modeling in Mechanobiology - Evolution of mechanical and structural properties in the Ascending Thoracic Aorta (ATA) is the results of complex mechanobiological processes. In this...  相似文献   

2.
In contrast to the widely applied approach to model soft tissue remodeling employing the concept of volumetric growth, microstructurally motivated models are capable of capturing many of the underlying mechanisms of growth and remodeling; i.e., the production, removal, and remodeling of individual constituents at different rates and to different extents. A 3-dimensional constrained mixture computational framework has been developed for vascular growth and remodeling, considering new, microstructurally motivated kinematics and constitutive equations and new stress and muscle activation mediated evolution equations. Our computational results for alterations in flow and pressure, using reasonable physiological values for rates of constituent growth and turnover, concur with findings in the literature. For example, for flow-induced remodeling, our simulations predict that, although the wall shear stress is restored completely, the circumferential stress is not restored employing realistic physiological rate parameters. Also, our simulations predict different levels of thickening on inner versus outer wall locations, as shown in numerous reports of pressure-induced remodeling. Whereas the simulations are meant to be illustrative, they serve to highlight the experimental data currently lacking to fully quantify mechanically mediated adaptations in the vasculature.  相似文献   

3.
A stabilizing criterion is derived for equations governing vascular growth and remodeling. We start from the integral state equations of the continuum-based constrained mixture theory of vascular growth and remodeling and obtain a system of time-delayed differential equations describing vascular growth. By employing an exponential form of the constituent survival function, the delayed differential equations can be reduced to a nonlinear ODE system. We demonstrate the degeneracy of the linearized system about the homeostatic state, which is a fundamental cause of the neutral stability observations reported in prior studies. Due to this degeneracy, stability conclusions for the original nonlinear system cannot be directly inferred. To resolve this problem, a sub-system is constructed by recognizing a linear relation between two states. Subsequently, Lyapunov’s indirect method is used to connect stability properties between the linearized system and the original nonlinear system, to rigorously establish the neutral stability properties of the original system. In particular, this analysis leads to a stability criterion for vascular expansion in terms of growth and remodeling kinetic parameters, geometric quantities and material properties. Numerical simulations were conducted to evaluate the theoretical stability criterion under broader conditions, as well as study the influence of key parameters and physical factors on growth properties. The theoretical results are also compared with prior numerical and experimental findings in the literature.  相似文献   

4.
Most mathematical models of the growth and remodeling of load-bearing soft tissues are based on one of two major approaches: a kinematic theory that specifies an evolution equation for the stress-free configuration of the tissue as a whole or a constrained mixture theory that specifies rates of mass production and removal of individual constituents within stressed configurations. The former is popular because of its conceptual simplicity, but relies largely on heuristic definitions of growth; the latter is based on biologically motivated micromechanical models, but suffers from higher computational costs due to the need to track all past configurations. In this paper, we present a temporally homogenized constrained mixture model that combines advantages of both classical approaches, namely a biologically motivated micromechanical foundation, a simple computational implementation, and low computational cost. As illustrative examples, we show that this approach describes well both cell-mediated remodeling of tissue equivalents in vitro and the growth and remodeling of aneurysms in vivo. We also show that this homogenized constrained mixture model suggests an intimate relationship between models of growth and remodeling and viscoelasticity. That is, important aspects of tissue adaptation can be understood in terms of a simple mechanical analog model, a Maxwell fluid (i.e., spring and dashpot in series) in parallel with a “motor element” that represents cell-mediated mechanoregulation of extracellular matrix. This analogy allows a simple implementation of homogenized constrained mixture models within commercially available simulation codes by exploiting available models of viscoelasticity.  相似文献   

5.
Biomechanics and Modeling in Mechanobiology - In its permanent quest of mechanobiological homeostasis, our vasculature significantly adapts across multiple length and timescales in various...  相似文献   

6.
A cartilage growth mixture (CGM) model is proposed to address limitations of a model used in a previous study. New stress constitutive equations for the solid matrix are derived and collagen (COL) remodeling is incorporated into the CGM model by allowing the intrinsic COL material constants to evolve during growth. An analytical validation protocol based on experimental data from a recent in vitro growth study is developed. Available data included measurements of tissue volume, biochemical composition, and tensile modulus for bovine calf articular cartilage (AC) explants harvested at three depths and incubated for 13 days in 20% fetal borine serum (FBS) and 20% FBS+beta-aminopropionitrile. The proposed CGM model can match tissue biochemical content and volume exactly while predicting theoretical values of tensile moduli that do not significantly differ from experimental values. Also, theoretical values of a scalar COL remodeling factor are positively correlated with COL cross-link content, and mass growth functions are positively correlated with cell density. The results suggest that the CGM model may help us to guide in vitro growth protocols for AC tissue via the a priori prediction of geometric and biomechanical properties.  相似文献   

7.
Mechanical stresses influence the structure and function of adult and developing blood vessels. When these stresses are perturbed, the vessel wall remodels to return the stresses to homeostatic levels. Constrained mixture models have been used to predict remodeling of adult vessels in response to step changes in blood pressure, axial length and blood flow, but have not yet been applied to developing vessels. Models of developing blood vessels are complicated by continuous and simultaneous changes in the mechanical forces. Understanding developmental growth and remodeling is important for treating human diseases and designing tissue-engineered blood vessels. This study presents a constrained mixture model for postnatal development of mouse aorta with multiple step increases in pressure, length and flow. The baseline model assumes that smooth muscle cells (SMCs) in the vessel wall immediately constrict or dilate the inner radius after a perturbation to maintain the shear stress and then remodel the wall thickness to maintain the circumferential stress. The elastin, collagen and SMCs have homeostatic stretch ratios and passive material constants that do not change with developmental age. The baseline model does not predict previously published experimental data. To approximate the experimental data, it must be assumed that the SMCs dilate a constant amount, regardless of the step change in mechanical forces. It must also be assumed that the homeostatic stretch ratios and passive material constants change with age. With these alterations, the model approximates experimental data on the mechanical properties and dimensions of aorta from 3- to 30-day-old mice.  相似文献   

8.
Standard protein substitution models use a single amino acid replacement rate matrix that summarizes the biological, chemical and physical properties of amino acids. However, site evolution is highly heterogeneous and depends on many factors: genetic code; solvent exposure; secondary and tertiary structure; protein function; etc. These impact the substitution pattern and, in most cases, a single replacement matrix is not enough to represent all the complexity of the evolutionary processes. This paper explores in maximum-likelihood framework phylogenetic mixture models that combine several amino acid replacement matrices to better fit protein evolution.We learn these mixture models from a large alignment database extracted from HSSP, and test the performance using independent alignments from TREEBASE.We compare unsupervised learning approaches, where the site categories are unknown, to supervised ones, where in estimations we use the known category of each site, based on its exposure or its secondary structure. All our models are combined with gamma-distributed rates across sites. Results show that highly significant likelihood gains are obtained when using mixture models compared with the best available single replacement matrices. Mixtures of matrices also improve over mixtures of profiles in the manner of the CAT model. The unsupervised approach tends to be better than the supervised one, but it appears difficult to implement and highly sensitive to the starting values of the parameters, meaning that the supervised approach is still of interest for initialization and model comparison. Using an unsupervised model involving three matrices, the average AIC gain per site with TREEBASE test alignments is 0.31, 0.49 and 0.61 compared with LG (named after Le & Gascuel 2008 Mol. Biol. Evol. 25, 1307-1320), WAG and JTT, respectively. This three-matrix model is significantly better than LG for 34 alignments (among 57), and significantly worse for 1 alignment only. Moreover, tree topologies inferred with our mixture models frequently differ from those obtained with single matrices, indicating that using these mixtures impacts not only the likelihood value but also the output tree. All our models and a PhyML implementation are available from http://atgc.lirmm.fr/mixtures.  相似文献   

9.
Biomechanics and Modeling in Mechanobiology - Growth in soft biological tissues in general results in anisotropic changes of the tissue geometry. It remains a key challenge in biomechanics to...  相似文献   

10.
The rapidly growing availability of multigene sequence data during the past decade has enabled phylogeny estimation at phylogenomic scales. However, dealing with evolutionary process heterogeneity across the genome becomes increasingly challenging. Here we develop a mixture model approach that uses reversible jump Markov chain Monte Carlo (MCMC) estimation to permit as many distinct models as the data require. Each additional model considered may be a fully parametrized general time-reversible model or any of its special cases. Furthermore, we expand the usual proposal mechanisms for topology changes to permit hard polytomies (i.e., zero-length internal branches). This new approach is implemented in the Crux software toolkit. We demonstrate the feasibility of using reversible jump MCMC on mixture models by reexamining a well-known 44-taxon mammalian data set comprising 22 concatenated genes. We are able to reproduce the results of the original analysis (with respect to bipartition support) when we make identical assumptions, but when we allow for polytomies and/or use data-driven mixture model estimation, we infer much lower bipartition support values for several key bipartitions.  相似文献   

11.
Cryo-electron tomography allows the visualization of macromolecular complexes in their cellular environments in close-to-live conditions. The nominal resolution of subtomograms can be significantly increased when individual subtomograms of the same kind are aligned and averaged. A vital step for such a procedure are algorithms that speedup subtomogram alignment and improve its accuracy to allow reference-free subtomogram classifications. Such methods will facilitate automation of tomography analysis and overall high throughput in the data processing. Building on previous work, here we propose a fast rotational alignment method that uses the Fourier equivalent form of a popular constrained correlation measure that considers missing wedge corrections and density variances in the subtomograms. The fast rotational search is based on 3D volumetric matching, which improves the rotational alignment accuracy in particular for highly distorted subtomograms with low SNR and tilt angle ranges in comparison to fast rotational matching of projected 2D spherical images. We further integrate our fast rotational alignment method in a reference-free iterative subtomogram classification scheme, and propose a local feature enhancement strategy in the classification process. As a proof of principle, we can demonstrate that the automatic method can successfully classify a large number of experimental subtomograms without the need of a reference structure.  相似文献   

12.
MOTIVATION: Previous studies have shown that accounting for site-specific amino acid replacement patterns using mixtures of stationary probability profiles offers a promising approach for improving the robustness of phylogenetic reconstructions in the presence of saturation. However, such profile mixture models were introduced only in a Bayesian context, and are not yet available in a maximum likelihood (ML) framework. In addition, these mixture models only perform well on large alignments, from which they can reliably learn the shapes of profiles, and their associated weights. RESULTS: In this work, we introduce an expectation-maximization algorithm for estimating amino acid profile mixtures from alignment databases. We apply it, learning on the HSSP database, and observe that a set of 20 profiles is enough to provide a better statistical fit than currently available empirical matrices (WAG, JTT), in particular on saturated data.  相似文献   

13.
Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin–Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations, and a new finite element model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement.  相似文献   

14.
This paper concerns the use and implementation of maximum-penalized-likelihood procedures for choosing the number of mixing components and estimating the parameters in independent and Markov-dependent mixture models. Computation of the estimates is achieved via algorithms for the automatic generation of starting values for the EM algorithm. Computation of the information matrix is also discussed. Poisson mixture models are applied to a sequence of counts of movements by a fetal lamb in utero obtained by ultrasound. The resulting estimates are seen to provide plausible mechanisms for the physiological process.  相似文献   

15.
A theoretical model for the remodeling of collagen gels is proposed. The collagen fabric is modeled as a network of collagen fibers, which in turn are composed of collagen fibrils. In the model, the strengthening of collagen fabric is accomplished by fibroblasts, which continuously recruit and attach more collagen fibrils to existing collagen fibers. The fibroblasts also accomplish a reorientation of collagen fibers. Fibroblasts are assumed to reorient collagen fibers toward the direction of maximum material stiffness. The proposed model is applied to experiments in which fibroblasts were inserted into a collagen gel. The model is able to predict the force-strain curves for the experimental collagen gels, and the final distribution of collagen fibers also agrees qualitatively with the experiments.  相似文献   

16.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

17.
In biomedical studies, testing for homogeneity between two groups, where one group is modeled by mixture models, is often of great interest. This paper considers the semiparametric exponential family mixture model proposed by Hong et al. (2017) and studies the score test for homogeneity under this model. The score test is nonregular in the sense that nuisance parameters disappear under the null hypothesis. To address this difficulty, we propose a modification of the score test, so that the resulting test enjoys the Wilks phenomenon. In finite samples, we show that with fixed nuisance parameters the score test is locally most powerful. In large samples, we establish the asymptotic power functions under two types of local alternative hypotheses. Our simulation studies illustrate that the proposed score test is powerful and computationally fast. We apply the proposed score test to an UK ovarian cancer DNA methylation data for identification of differentially methylated CpG sites.  相似文献   

18.
Ribonucleic acid (RNA) molecules play important roles in a variety of biological processes. To properly function, RNA molecules usually have to fold to specific structures, and therefore understanding RNA structure is vital in comprehending how RNA functions. One approach to understanding and predicting biomolecular structure is to use knowledge-based potentials built from experimentally determined structures. These types of potentials have been shown to be effective for predicting both protein and RNA structures, but their utility is limited by their significantly rugged nature. This ruggedness (and hence the potential's usefulness) depends heavily on the choice of bin width to sort structural information (e.g. distances) but the appropriate bin width is not known a priori. To circumvent the binning problem, we compared knowledge-based potentials built from inter-atomic distances in RNA structures using different mixture models (Kernel Density Estimation, Expectation Minimization and Dirichlet Process). We show that the smooth knowledge-based potential built from Dirichlet process is successful in selecting native-like RNA models from different sets of structural decoys with comparable efficacy to a potential developed by spline-fitting - a commonly taken approach - to binned distance histograms. The less rugged nature of our potential suggests its applicability in diverse types of structural modeling.  相似文献   

19.
Alternative EM methods for nonparametric finite mixture models   总被引:1,自引:0,他引:1  
  相似文献   

20.
This paper presents an anisotropic analysis model for the human cornea. The model is based on the assumption that the fibrils in the cornea are organised into lamellae, which may have preferential orientation along the superior-inferior and nasal-temporal directions, while the alignment of lamellae with different orientations is assumed to be random. Hence, the cornea can be regarded as a laminated composite shell. The constitutive equation describing the relationships between membrane forces, bending moments, and membrane strains, bending curvatures are derived. The influences of lamella orientations and the random alignment of lamellae on the stiffness coefficients of the constitutive equation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号