首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Objectives

To improve the quality of diesel fuel via removal of aromatic compounds using Pseudomonas sp.

Results

In the present study Pseudomonas sp. was able to remove 94% of fluorene, 59% of phenanthrene, 49% of anthracene, 52% of fluoranthene, 45% of pyrene and 75% carbazole present in diesel oil. Additionally, it also does not affect the aliphatic content of fuel thus maintaining the carbon backbone of the fuel.

Conclusions

Pseudomonas sp. is a potential biocatalyst that can be used in the refining industry.
  相似文献   

3.
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.  相似文献   

4.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

5.
Prospective methyl tert-butyl ether (MTBE) degrading bacterial strains and/or consortia were identified. The potential for aerobic degradation of MTBE was examined using bacterial isolates from contaminated soils and groundwater. Using the 16S rDNA protocol, two isolates capable of degrading MTBE (Rhodococcus pyridinivorans 4A and Achromobacter xylosoxidans 6A) were identified. The most efficient consortium of microorganisms was acquired from contaminated groundwater. The growth of both strains and the consortium on MTBE was supported by various organic substrates, and monitored using Bioscreen®. The biochemical oxygen demand of the cultures was measured using OxiTop®, and their MTBE concentrations were estimated by gas chromatography. After 3 weeks of aerobic cultivation using n-alkanes as cosubstrate, the concentration of MTBE in R. pyridinivorans 4A was reduced to 62.4 % of its initial amount (50 ppm).  相似文献   

6.
Production of biosurfactants by acidophilic mycobacteria was demonstrated in the course of aerobic degradation of hydrocarbons (n-tridecane, n-tricosane, n-hexacosane, model mixtures of С14–С17, С1219, and С9–С21n-alkanes, 2,2,4,4,6,8,8-heptamethylnonane, squalane, and butylcyclohexane) and their complex mixtures (hydrocarbon gas condensate, kerosene, black oil, and paraffin oil) under extremely acidic conditions (pH 2.5). When grown on hydrocarbons, the studied bacterial culture AGS10 caused a decrease in the surface and interfacial tension of the solutions (to the lowest observed values of 26.0 and 1.3 mN/m, respectively) compared to the bacteria-free control. The rheological characteristics of the culture changed only when mycobacteria were grown on hydrocarbons. Neither the medium nor the cell-free culture liquid had the surfactant activity, which indicated formation of an endotype biosurfactant by mycobacteria. Biodegradation of n-alkanes was accompanied by an increase in cell numbers, surfactant production, and changes in the hydrophobicity of bacterial cell surface and in associated phenomena of adsorption and desorption to the hydrocarbon phase. Research on AGS10 culture liquids containing the raw biosurfactant demonstrated the preservation of its activity within a broad range of pH, temperature, and salinity.  相似文献   

7.
Botrytis cinerea attacks a broad range of host causing significant economic losses in the worldwide fruit export industry. Hitherto, many studies have focused on the penetration mechanisms used by this phytopathogen, but little is known about the early stages of infection, especially those such as adhesion and germination. The aim of this work was to evaluate the effect of cuticular waxes compounds from table grapes on growth, germination and gene expression of B. cinerea. To accomplish this, growth was analyzed using as substrate n-alkanes extracted from waxes of fresh fruit (table grapes, blueberries and apricots). Subsequently, the main compounds of table grape waxes, oleanolic acid (OA) and n-fatty alcohols, were mixed to generate a matrix on which conidia of B. cinerea were added to assess their effect on germination and expression of bctub, bchtr and bchex genes. B. cinerea B05.10, isolated from grapes, increased its growth on a matrix composed by table grapes n-alkanes in comparison to a matrix made with n-alkanes from apricot or blueberries. Moreover, at 2.5 h, B05.10 germination increased 17 and 33 % in presence of n-alkanes from table grape, in comparison to conditions without alkanes or with blueberries alkanes, respectively. Finally, expression of bchtr and bchex showed a significant increase during the first hour after contact with n-fatty alcohols and OA. In conclusion, B. cinerea displays selectivity towards certain compounds found in host waxes, mainly n-fatty alcohols, which could be a good candidate to control this phytopathogen in early stages of infection.  相似文献   

8.
Almost all knowledge about bacterial production of biosurfactants (BSFs) is limited to aerobic conditions. However, it is also known that bacteria can produce BSFs under oxygen-limiting conditions. These substances may be involved in important environmental processes (e.g. formation of gas hydrates and biofilms) or be applied in biotechnological processes (e.g. bioremediation and microbial enhancement of oil recovery, MEOR). Up to now, only few bacteria are described with the ability to produce BSFs under microaerobic and anaerobic conditions. Most of them belong to the Bacillus and Pseudomonas genera. However, BSF production under oxygen limitation has been detected in other bacterial groups (e.g. Anaerophaga and Thermoanaerobacter) involving different biosynthetic pathways. In this review, we summarize the current knowledge on growth requirements, cultivation conditions and properties of BSFs produced under oxygen-limiting conditions. In addition, we discuss the potential applications of microaerophilic and anaerobic BSF-producing bacteria in the perspective of bioremediation or MEOR strategies, energy and industry.  相似文献   

9.
The genus Pseudomonas is one of the most diverse and ecologically important groups of bacteria. Numerous representatives of the genus are found in microbial communities of all natural environments, including those closely associated with plants and animals. This ubiquitous distribution determines a necessity of their physiological and genetic adaptations. Molecular methods revealed that bacteria of the genus Pseudomonas were predominant in ulcerative lesions on the skin of Baikal yellowfin Cottocomephorus grewingkii (Dybowski, 1874). According to ribosomal phylogeny, cultivated Pseudomonas spp. isolated from both ulcerative lesions and the water column of Lake Baikal were grouped into the intrageneric cluster IG P. fluorescens. The topology of the phylogenetic tree based on the gene for outer membrane porin OprF generally coincided with that based on the 16S rRNA genes at the intrageneric level; however, it reflected ecological features of the strains of the genus Pseudomonas at the subgroup level. Screening of pathogenicity determinants detected the oprL, ecfX, fliC, and algD genes in the genomes of Pseudomonas spp. isolated from the ulcerative lesions of fish, whereas oprL and gyrB genes were determined in the strains isolated from the water column.  相似文献   

10.
In plants, ROS signaling and increase in activities of antioxidants are among defense responses. The present study describes the oxidative stress profiling in model host plant tomato (Solanum lycopersicum L.), during an invasion of the wilt pathogen Fusarium oxysporum f. sp. lycopersici with or without seed priming with Pseudomonas isolates M80, M96 and T109. Tomato seeds were primed with known Pseudomonas isolates M80, M96 and T109 and the forty-day- old plants were challenged with spores of F. oxysporum under greenhouse conditions. Leaf samples were collected at 0, 24, 48 72 and 96 h post fungal challenge and analysed for systemic level of oxidative stress parameters including total phenolics, proline, hydrogen peroxide, lipid peroxidation and enzymatic antioxidants. Disease incidence in the plants under greenhouse conditions was also calculated. Results revealed that priming with Pseudomonas isolates resulted in reduced oxidative stress in the host, during pathogen invasion. M80-priming showed highest antioxidative protection to the host plants during F. oxysporum invasion. The observed reduction in hydrogen peroxide and lipid peroxidation in primed plants was in agreement with the increased activities of the corresponding antioxidant enzymes. Greenhouse results showed that the highest wilt disease symptoms were with M80-priming followed by M96 and T109. The present study gives substantial evidences on the oxidative stress mitigation in response to Pseudomonas-priming on the model tomato-Fusarium interaction system.  相似文献   

11.
Many bacteria belonging to the order Rhizobiales have fixNOQP genes which encode cytochrome oxidase with high affinity to oxygen required for oxidative phosphorylation in microaerophilic conditions. There is one copy of the identified fixNOQP operon in ancestral forms of rhizobia (Bradyrhizobium), as well as in their putative evolutionary predecessors (bacteria related to Rhodopseudomonas). At the same time, forms deeply specialized in symbiosis (Rhizobium leguminosarum, Sinorhizobium meliloti) have multiple (2–3) copies, some of them have a high similarity (>90%) to fixNOQP genes of Bradyrhizobium and Rhodopseudomonas, and others have only 30–50% similarity. Two divergent copies fixNOQP are detected in Tardiphaga, which is a representative of the Bradyrhizobiaceae family, lacking the ability to fix N2 (lack of nif genes encoding the synthesis of nitrogenase) and to induce the formation of nodules on legumes roots (lack of nod genes encoding the synthesis of signal Nod factors activating symbiosis development). The presence of Tardiphaga in nodule bacterial communities from a range of legumes, including Vavilovia formosa (relic representative of the tribe Fabeae, for which R. leguminosarum bv. viciae is the main microsymbiont), suggests that the ancestral gene duplication and subsequent divergence of fixNOQP operon in bacteria related to Tardiphaga opened the possibility of wide dissemination of functionally different copies of this cluster among symbiotically active forms of Rhizobiales. It is possible that the acquisition of fixNOQP genes determines adaptation of bacteria to microaerophilic niches not only in plants nodules but also in their environment (the rhizosphere, rhizoplane, internal portions of soil aggregates).  相似文献   

12.
Jatropha curcas and Jatropha mollissima plants were evaluated under conditions of high (HSM) and low (LSM) soil moisture in a semi-arid environment, as changes in the content and concentration of epicuticular wax and the leaf metabolism which could have a relationship with drought tolerance. Besides epicuticular wax, gas exchange, antioxidant system and biochemical parameters of the photosynthetic metabolism were measured. The epicuticular wax content increased only in J. mollissima leaves 95 % under LSM, when compared with HSM conditions. Therefore, J. curcas invested less in the production of long-chain n-alkanes than did J. mollissima under LSM conditions. J. mollissima plants showed the highest CO2 assimilation rate during the HSM period compared to J. curcas. Both species showed high stability in some leaf biochemistry products, highlighting the highest sugar content, free amino acids, total soluble protein, and photosynthetic pigments in the leaves of J. mollissima plants under both of the soil moisture conditions. Moreover, the stability and performance of the different parameters, such as morphologic variables, seem to allow J. mollissima plants to tolerate semi-arid conditions.  相似文献   

13.

Background

The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In addition, functional predictions are made.

Results

Our results show that BB0173, in contrast to BB0172, is an inner membrane protein, in which the VWFA domain is exposed to the periplasmic space. Further, BB0173 was predicted to have an aerotolerance regulator domain, and expression of BB0173 and the surrounding genes was evaluated under aerobic and microaerophilic conditions, revealing that these genes are downregulated under aerobic conditions. Since the VWFA domain containing proteins of B. burgdorferi are highly conserved, they are likely required for survival of the pathogen through sensing diverse environmental oxygen conditions.

Conclusions

Presently, the complex mechanisms that B. burgdorferi uses to detect and respond to environmental changes are not completely understood. However, studying the mechanisms that allow B. burgdorferi to survive in the highly disparate environments of the tick vector and mammalian host could allow for the development of novel methods of preventing acquisition, survival, or transmission of the spirochete. In this regard, a putative membrane protein, BB0173, was characterized. BB0173 was found to be highly conserved across pathogenic Borrelia, and additionally contains several truly transmembrane domains, and a Bacteroides aerotolerance-like domain. The presence of these functional domains and the highly conserved nature of this protein, strongly suggests a required function of BB0173 in the survival of B. burgdorferi.
  相似文献   

14.

Background and aims

Pseudomonas spp. have previously been isolated from lucerne nodules. The aims of this study were to: 1) investigate the microbiome within a lucerne nodule; and 2) assess the ability of two Pseudomonas spp. isolated from lucerne nodules to form nodules.

Methods

The microbial community within 27 lucerne nodules, collected from plants inoculated with Sinorhizobium meliloti as a seed coat or peat slurry and an uninoculated control, was identified using 16S rRNA based Illumina sequencing. Lucerne seedlings were inoculated with the two Pseudomonas spp. strains. The plants were grown in sterile conditions for 6 weeks and nodulation was assessed. 16S rRNA, nodC, nodA and nifH genes were amplified.

Results

Sinorhizobium was the dominant genus in nodules, comprising 90–99% of all sequences regardless of inoculation treatment. Overall, 9 other genera were identified, with each represented by <3% of the total sequences. Both Pseudomonas strains were able to form nodules with lucerne. From one of these strains, a nodC gene was detected.

Conclusion

Lucerne nodules contained a diverse assemblage of bacterial species, some of which were capable of forming nodules in the absence of rhizobia.
  相似文献   

15.
16.
Pseudomonas sp., which occupy a variety of ecological niches, have been widely studied for their versatile metabolic capacity to promote plant growth, suppress microbial pathogens, and induce systemic resistance in plants. In this study, a Pseudomonas sp. strain p21, which was isolated from tomato root endophytes, was identified as having antagonism against Aspergillus niger. Further analysis showed that this strain had the ability to biosynthesise siderophores and was less effective in inhibiting the growth of A. niger with the supplementation of Fe3+ in the agar medium. Genomic sequencing and the secondary metabolite cluster analysis demonstrated that Pseudomonas sp. p21 harboured 2 pyoverdine biosynthetic gene clusters, which encode compounds with predicted core structures and two variable tetra-peptide or eleven-peptide chains. The results indicated that siderophore-mediated competition for iron might be an important mechanism in Pseudomonas suppression of the fungal pathogen A. niger and in microbe-pathogen-plant interactions.  相似文献   

17.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.  相似文献   

18.
Dodonaea viscosa, a wild and perennial shrub that can tolerate harsh environmental conditions, was used for the isolation of its endophytic bacteria and their potential was explored for the promotion of Canola growth. The bacteria identified through 16S rRNA gene sequencing, belonged to ten different genera namely Inquilinus, Xanthomonas, Pseudomonas, Rhizobium, Brevundimonas, Microbacterium, Bacillus, Streptomyces, Agrococcus and Stenotrophomonas. All the strains produced small amount of IAA (indole acetic acid) in the absence of tryptophan and comparatively more in the presence of tryptophan. All the bacterial strains were positive for ammonia production, cellulase and pectinase activity, but few of them showed phosphate solubilization, siderophore and hydrogen cyanide production. Only three strains showed ACC (1-aminocyclopropane-1-carboxylate) deaminase activity when tested using in-vitro enzyme assay. Members of genera Bacillus, Pseudomonas and Streptomyces showed positive chitinase, protease and antifungal activity against two phytopathogenic fungi Aspergillus niger and Fusarium oxysoprum, while members of Xanthomonas, Pseudomonas and Bacillus showed significant root elongation of Canola which could be related with their positive plant-growth-promoting (PGP) traits. Among the three plant growth promoting Bacillus strains, B. idriensis is never reported before for its PGP activities. These results showed the potential of Dodonaea viscosa endophytic bacteria as PGPBs, which in future can be further explored for their host range/molecular mechanisms.  相似文献   

19.
Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.  相似文献   

20.
In this study, we investigated chitin hydrolysis by the bacteria inhabiting the ground of the Barents Sea. Four microbial cultures isolated from the ground were described as the genera of Rhodococcus sp., Bacillus sp., Pseudomonas sp., and Acinetobacter sp. Protein complexes with endochitinase and exochitinase activities were purified from the culture liquid. These microorganisms can participate in chitin degradation in sea water. The average molecular weight of the protein fraction with the chitinolytic activity constituted 92–135 kDa. The ratio of the endo-/exochitinase activities of the enzymatic systems was increased in the order Pseudomonas sp. < Bacillus sp. < Acinetobacter sp. < Rhodococcus sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号