首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of intestinal lamina propria lymphocytes (LPL) and intraepithelial lymphocytes (IEL) in controlling Cryptosporidium parvum infection, changes in their phenotypes and functional properties were studied after induction of primary and challenge infections in immunocompetent mice. As shown by oocyst-shedding patterns, the challenge-infected group recovered more rapidly from infection than did the primary-infected group. In LPL, proportions of activated CD4+, CD25+, IgG1+, IgA+, and CD4+/IFN-gamma+ cells increased significantly in the primary-infected group compared with controls. In the challenge-infected group, proportions of these cells decreased. The antigen-specific IgA level was elevated significantly among LPL of both primary- and challenge-infected groups. Among IEL, proportions of activated CD8+, T cell receptor (TCR) gammadelta+, and CD8+/TCR gammadelta+ cells increased significantly in the challenge-infected group compared with controls and the primary-infected group; their cytotoxicity also was enhanced. However, the proportion of IEL expressing Th1 cytokines was lower than that among LPL in both infected groups. The results suggest that LPL play a more important role in protection against a primary infection with C. parvum, through the production of IFN-gamma and IgA, whereas IEL are more involved in protection against a challenge infection, through enhanced cytotoxicity.  相似文献   

2.
3.
Toxoplasma gondii has been shown to result in life-threatening encephalitis in immunocompromised patients after reactivation of dormant parasites. In order to obtain information on immune responses related to this phenomenon, BALB/c mice were infected with 25 cysts of the 76K strain of T. gondii, then, treated orally with dexamethasone (Toxo/Dexa-treated group) in order to reactivate the chronic toxoplasmosis. None of the T. gondii-infected mice died during the experimental periods, whereas the Toxo/Dexa-treated mice evidenced a significant attenuation of survival periods. Toxoplasma-specific IgG2a, IgA and IgM titers in sera were significantly depressed in the Toxo/Dexa-treated mice; however, the IgG1 sera titers were similar to those seen in the Toxoplasma-infected mice. The percentages of CD4+ and CD8 alpha + T cells in the Toxo/Dexa-treated mice were significantly reduced 2 weeks after dexamethasone treatment. IFN-gamma and IL-10 production levels in the Toxo/Dexa-treated mice were depressed significantly, whereas IL-4 production was increased temporarily. The expression levels of the Toxoplasma-specific P30 and B1 genes were found to have been increased in the Toxo/Dexa-treated mice in comparison with the Toxoplasmainfected mice. Collectively, the findings of this study demonstrate that reactivation of murine toxoplasmosis as the result of dexamethasone treatment induced a depression in Th1 immune responses, whereas Th2 immune responses were not significantly influenced.  相似文献   

4.
A murine model of IgA deficiency has been established by targeted deletion of the IgA switch and constant regions in embryonic stem cells. B cells from IgA-deficient mice were incapable of producing IgA in vitro in response to TGF-beta. IgA-deficient mice expressed higher levels of IgM and IgG in serum and gastrointestinal secretions and decreased levels of IgE in serum and pulmonary secretions. Expression of IgG subclasses was complex, with the most consistent finding being an increase in IgG2b and a decrease in IgG3 in serum and secretions. No detectable IgA Abs were observed following mucosal immunization against influenza; however, compared with those in wild-type mice, increased levels of IgM Abs were seen in both serum and secretions. Development of lymphoid tissues as well as T and B lymphocyte function appeared normal otherwise. Peyer's patches in IgA-deficient mice were well developed with prominent germinal centers despite the absence of IgA in these germinal centers or intestinal lamina propria. Lymphocytes from IgA-deficient mice responded to T and B cell mitogens comparable to those of wild-type mice, while T cells from IgA-deficient mice produced comparable levels of IFN-gamma and IL-4 mRNA and protein. In conclusion, mice with targeted deletion of the IgA switch and constant regions are completely deficient in IgA and exhibit altered expression of other Ig isotypes, notably IgM, IgG2b, IgG3, and IgE, but otherwise have normal lymphocyte development, proliferative responses, and cytokine production.  相似文献   

5.
To assess the relationship between the changes of cellular components and the production of Th1 cytokine in the immune tissue, inbred C57BL/6 mice were orally infected with 40 cysts of 76K strain of Toxoplasma gondii. The sequential change of cell differentials and IFN-gamma production of splenocytes were analyzed by Diff-Quik stain and RT-PCR. There were no significant proportional changes of cellular components of splenocytes until day 4 postinfection (PI) as compared to those of day 0, and the relative percentage of macrophages and neutrophils/eosinophils increased significantly (p < 0.01) thereafter. The expression of IFN-gamma mRNA of CD3- cells was observed from day 1 PI at a low level. However, IFN-gamma production of CD3+ cells increased significantly from day 4 PI (p < 0.01) which progressively increased thereafter. These findings provide the relative percentages of granulocytes and macrophages were increased in conjunction with increase of total number of splenocytes after oral infection with T. gondii in the susceptible murine hosts, and lymphocytes were the major cellular components and the important source of IFN-gamma.  相似文献   

6.
Abnormal regulation of IFN-gamma secretion in vitamin A deficiency   总被引:4,自引:0,他引:4  
T lymphocytes from vitamin A-deficient (A-) mice show a decreased ability to stimulate B lymphocytes for Ag-specific secondary IgG1 responses in vivo and in vitro. Experiments reported here traced the molecular basis for this functional defect to an overproduction of IFN-gamma by A- CD4+ T cells compared with cells from A-sufficient (A+) mice. Secretion of IL-2 and IL-4 by cells from A- and A+ mice was equivalent. Retinoic acid supplementation in vitro decreased IFN-gamma secretion from A- T cells, indicating that IFN-gamma production is retinoid-responsive. Adding IFN-gamma neutralizing antibodies to cultures established with cells from immune A- mice substantially increased IgG1 production, whereas IL-4 addition moderately increased IgG1 production. Adding retinoic acid to the cultures either at initiation, or 48 h later, fully restored IgG1 production by A- cultures to the level of A+ control cultures. These results are consistent with a role for vitamin A in negatively regulating IFN-gamma secretion.  相似文献   

7.
IL-18 has been shown to be a strong cofactor for Th1 T cell development. However, we previously demonstrated that when IL-18 was combined with IL-2, there was a synergistic induction of a Th2 cytokine, IL-13, in both T and NK cells. More recently, we and other groups have reported that IL-18 can potentially induce IgE, IgG1, and Th2 cytokine production in murine experimental models. Here, we report on the generation of IL-18-transgenic (Tg) mice in which mature mouse IL-18 cDNA was expressed. CD8+CD44high T cells and macrophages were increased, but B cells were decreased in these mice while serum IgE, IgG1, IL-4, and IFN-gamma levels were significantly increased. Splenic T cells in IL-18 Tg mice produced higher levels of IFN-gamma, IL-4, IL-5, and IL-13 than control wild-type mice. Thus, aberrant expression of IL-18 in vivo results in the increased production of both Th1 and Th2 cytokines.  相似文献   

8.
In this study, we examine whether native cholera toxin (nCT) as a mucosal adjuvant can support trinitrophenyl (TNP)-LPS-specific mucosal immune responses. C57BL/6 mice were given nasal TNP-LPS in the presence or absence of nCT. Five days later, significantly higher levels of TNP-specific mucosal IgA Ab responses were induced in the nasal washes, saliva, and plasma of mice given nCT plus TNP-LPS than in those given TNP-LPS alone. High numbers of TNP-specific IgA Ab-forming cells were also detected in mucosal tissues such as the nasal passages (NPs), the submandibular glands (SMGs), and nasopharyngeal-associated lymphoreticular tissue of mice given nCT. Flow cytometric analysis showed that higher numbers of surface IgA+, CD5+ B cells (B-1a B cells) in SMGs and NPs of mice given nasal TNP-LPS plus nCT than in those given TNP-LPS alone. Furthermore, increased levels of IL-5R alpha-chain were expressed by B-1a B cells in SMGs and NPs of mice given nasal TNP-LPS plus nCT. Thus, CD4+ T cells from these mucosal effector lymphoid tissues produce high levels of IL-5 at both protein and mRNA levels. When mice were treated with anti-IL-5 mAb, significant reductions in TNP-specific mucosal IgA Ab responses were noted in external secretions. These findings show that nasal nCT as an adjuvant enhances mucosal immune responses to a T cell-independent Ag due to the cross-talk between IL-5Ralpha+ B-1a B cells and IL-5-producing CD4+ T cells in the mucosal effector lymphoid tissues.  相似文献   

9.
In the present study the capacity of early fetal B cells to produce Ig was investigated. It is shown that B cells from fetal liver, spleen, and bone marrow (BM) can be induced to produce IgM, IgG, IgG4, and IgE, but not IgA, in response to IL-4 in the presence of anti-CD40 mAb or cloned CD4+ T cells. Even splenic B cells from a human fetus of only 12 wk of gestation produced these Ig isotypes. IFN-alpha, IFN-gamma, and transforming growth factor-beta inhibited IL-4-induced IgE production in fetal B cells, as described for mature B cells. The majority of B cells in fetal spleen expressed CD5 and CD10 and greater than 99% of B cells in fetal BM were CD10+. Highly purified CD10+, CD19+ immature B cells and CD5+, CD19+ B cells could be induced to produce Ig, including IgG4 and IgE, in similar amounts as unseparated CD19+ B cells. Virtually all CD19+ cells still expressed CD10 after 12 days of culture. However, the IgE-producing cells at the end of the culture period were found in the CD19-,CD10- cell population, suggesting differentiation of CD19+,CD10+ B cells into CD19-,CD10- plasma cells. Pre-B cells are characterized by their lack of expression of surface IgM (sIgM). Only 30 to 40% of BM B cells expressed sIgM. However, in contrast to sIgM+,CD10+,CD19+ immature B cells, sorted sIgM-,CD10+,CD19+ pre-B cells failed to differentiate into Ig-secreting cells under the present culture conditions. Addition of IL-6 to these cultures was ineffective. Taken together, these results indicate that fetal CD5+ and CD10+ B cells are mature in their capacity to be induced to Ig isotype switching in vitro as soon as they express sIgM.  相似文献   

10.
We examined the immunogenicity of a Salmonella enterica complex vaccine (CV), consisting of flagellin and polysome purified from serotype Typhimurium LT2. CV plus cholera toxin (CT), in three oral doses given at 7-day intervals, conferred complete protection on C57BL/6 mice against lethal oral infection with a wild-type strain. It elicited mucosal IgA > IgG2a > IgG1 and systemic IgG2a > IgG1 > IgA antibodies to flagellin and polysome, and delayed footpad response (DFR) to both antigens. In Peyer's patches (PPs) and lamina propria (LP), IgA was produced under a Th1-dominant environment; CD4+T cells from produced interleukin (IL)-2, interferon (IFN)-gamma, and IL-10 by stimulation with salmonella extract. On the same protocol, flagellin plus CT induced flagellin-specific mucosal and systemic IgA and IgG1 antibodies, CD4+T cells producing IL-10 and IFN-gamma in PPs and LP, and only minimal levels of flagellin-specific DFR. Polysome plus CT induced polysome-specific mucosal and systemic IgG2a in addition to IgG1 and IgA antibodies, CD4+T cells producing IFN-gamma and IL-2 in PPs and LP, and polysome-specific DFR. These two vaccines, however, conferred at most 50-60% survival rates. Our results suggest that polysomes in CV provide effective adjuvant activity for the induction of both mucosal and systemic Th1-biased responses toward flagellin.  相似文献   

11.
Neodiplostomum seoulense is highly pathogenic and lethal to experimental mice; most worms are expelled within 2 mo of acquisition. In this study, T-helper (Th) cell immune responses were studied in N. seoulense-infected BALB/c mice. Spleen and mesenteric lymph node (MLN) cells of infected mice proliferated in response to parasite antigens; CD4+ T cells proliferated more than CD8+ T cells. Antigen-induced interferon (IFN)-gamma (a Th1 cytokine) secretion began to increase at day 7 postinfection (PI) in spleen and MLN cells, and this was maintained at day 28 PI, whereas interleukin (IL)-4 (a Th2 cytokine) secretion was somewhat lower. Similar results were observed for mRNA signals of IFN-gamma and IL-4. Antigen-specific serum total immunoglobulin (Ig)G, IgG1, IgM, and IgA levels (Th2-induced) were elevated from days 7 to 14 to day 28 PI, and IgG2a (Th1-induced) was elevated at days 21 to 28 PI. Interestingly, the numbers of macrophages (Th1- or Th2-induced), which were found to kill N. seoulense worms in vitro, increased remarkably during days 14-28 PI in spleens and small intestines of infected mice. This study shows that mixed Th1 and Th2 responses occur during the course of N. seoulense infection in BALB/c mice. Heavy infiltrations of macrophages in the small intestine may participate in host damage and worm expulsion.  相似文献   

12.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

13.
The H-2-compatible mouse strains, AKR and B10.BR, exhibit disparate responses to infection with the parasitic nematode Trichinella spiralis. The resistant AKR mice expel intestinal adult worms faster than susceptible B10.BR mice. We tested antibody and lymphokine responses in these strains. With respect to antibody responses, the B10.BR mice had 3- to 10-fold more serum IgE and T. spiralis-specific IgG1 and IgA than AKR mice. The B10.BR mice also had greater numbers of IgG and IgA plaque-forming cells than AKR mice. In contrast, AKR mice produced T. spiralis-specific IgG2a, whereas the B10.BR mice did not. The antibody response kinetics of these strains were similar. We also analyzed lymphokine secretion after restimulating lymphocytes in vitro with T. spiralis Ag. The AKR mesenteric lymph node cells produced more IFN-gamma and less IL-4 than the B10.BR mesenteric lymph node cells. The B10.BR splenocytes produced more IL-4 than the AKR splenocytes, although splenocyte IFN-gamma production was not different. The kinetics of IL-4 production also differed between the two strains. In summary, resistant AKR mice produced more IFN-gamma and T. spiralis-specific IgG2a than susceptible B10.BR mice, which produced more IL-4, IgE, and T. spiralis-specific IgG1. Our results are consistent with differential activation of Th cell subsets in T. spiralis-infected AKR and B10.BR mice.  相似文献   

14.
The murine intraepithelial lymphocyte (IEL) population is enriched in T cells that express the gamma delta-TCR, however, the biologic function served by these T cells remains obscure. IEL are considered to be major effector cells in mucosal immunity, and we have investigated whether IEL subsets could reverse orally induced systemic unresponsiveness (oral tolerance; OT) and support secondary type responses when adoptively transferred to mice orally tolerized with SRBC. When purified CD3+ IEL from mice orally primed with SRBC were transferred to adoptive hosts and challenged with SRBC, splenic IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses were observed. However, CD3+ IEL from HRBC orally primed mice did not abrogate SRBC induced OT. Further, HRBC-primed CD3+, IEL converted HRBC-specific OT but not SRBC-specific OT. CD3+ IEL could be separated into four subsets based on expression of CD4 and CD8. CD3+, CD4-, 8+ T cells were the major subset (74.5%), with smaller numbers of CD4- and CD8- (double negatives, DN) (7.8%), CD4+, 8- (7.6%) and CD4+, CD8+ (double positives) (10.1%) T cells. Interestingly, both the CD3+, CD8+, and the CD3+, DN IEL subsets abrogated OT, resulting in significant IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses when adoptively transferred to mice with OT. However, neither CD3+, CD4+, CD8-, nor double positive T cells affected OT when studied in this system. The CD3+, CD8+ IEL subset could be further separated into Thy-1+ (16.6%) and Thy-1- (83.4%) cells; adoptive transfer of Thy-1- cells abrogated oral tolerance whereas the Thy-1+ subset was without effect. When the expression of TCR on IEL with this biologic function was determined by use of monoclonal anti-alpha beta TCR (H57.597), TCR2-, CD3+ IEL possessed immunoregulatory function whereas the alpha beta-TCR+ (TCR2+) fraction did not abrogate OT. Immunoprecipitation of membrane fractions obtained from purified CD3+, CD4-, CD8+, Thy-1- IEL with polyclonal anti-delta peptide (Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) antibody revealed bands of 45 and 35 kDa, corresponding to the delta- and gamma-chains, respectively. These results suggest that gamma delta-TCR+ IEL possess a regulatory function, namely the restoration of immune responses in a state of oral tolerance. Further, both CD3+, CD4-, CD8+, Thy-1-, and CD3+, DN IEL T cells exhibit this effector contrasuppressor function.  相似文献   

15.
IL-10 has potent immunosuppressive properties, and IL-10-producing CD4+ Tr1 cells have been characterized as regulators of Th1-mediated immunity. In this study, using a s.c. model of glioma cell growth in mice, we demonstrate that CD4+, but not CD8+, T cells play a critical role in tumor rejection following vaccination with irradiated glioma cells. Surprisingly, glioma-specific CD4+ T cells produce IL-10 but neither IL-4 nor IFN-gamma, and glioma rejection is compromised in IL-10(-/-) hosts. Hence, our findings demonstrate that IL-10-producing CD4+ T cells can manifest antitumor functions and suggest that IL-10 may have proinflammatory effects in disease states.  相似文献   

16.
Exocrinopathy and pancreatitis-like injury were developed in C57BL/6 (B6) mice infected with LP-BM5 murine leukemia virus, which is known to induce murine acquired immunodeficiency syndrome (MAIDS). The role of chemokines, especially CXCL10/interferon (IFN)-gamma-inducible protein 10 (IP-10), a chemokine to attract CXCR3+ T helper 1-type CD4+ T cells, has not been investigated thoroughly in the pathogenesis of pancreatitis. B6 mice were inoculated intraperitoneally with LP-BM5 and then injected every week with either an antibody against IP-10 or a control antibody. Eight weeks after infection, we analyzed the effect of IP-10 neutralization. Anti-IP-10 antibody treatment did not change the generalized lymphadenopathy and hepatosplenomegaly of mice with MAIDS. The treatment significantly reduced the number of IP-10- and CXCR3-positive cells in the mesenteric lymph nodes (mLNs) but not the phenotypes and gross numbers of cells. In contrast, IP-10 neutralization reduced the number of mononuclear cells infiltrating into the pancreas. Anti-IP-10 antibody treatment did not change the numbers of IFN-gamma+ and IL10+ cells in the mLN but significantly reduced their numbers, especially IFN-gamma+ and IL-10+ CD4+ T cells and IFN-gamma+ Mac-1+ cells, in the pancreas. IP-10 neutralization ameliorated the pancreatic lesions of mice with MAIDS probably by blocking the cellular infiltration of CD4+ T cells and IFN-gamma+ Mac-1+ cells into the pancreas at least at 8 wk after infection, suggesting that IP-10 and these cells might play a key role in the development of chronic autoimmune pancreatitis.  相似文献   

17.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

18.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

20.
We used an adoptive transfer system and CD4+ T cell clones with defined lymphokine profiles to examine the role of CD4+ T cells and the types of lymphokines involved in the development of B cell memory and affinity maturation. Keyhole limpet hemocyanin (KLH)-specific CD4+ Th2 clones (which produce IL-4 and IL-5 but not IL-2 or IFN-gamma) were capable of inducing B cell memory and affinity maturation, after transfer into nude mice or after transfer with unprimed B cells into irradiated recipients and immunization with TNP-KLH. In addition, KLH-specific Th1 clones, which produce IL-2 and IFN-gamma but not IL-4 or IL-5, were also effective in inducing B cell memory and high affinity anti-TNP-specific antibody. The induction of affinity maturation by Th1 clones occurred in the absence of IL-4, as anti-IL-4 mAb had no effect on the affinity of the response whereas anti-IFN-gamma mAb completely blocked the response. Th1 clones induced predominantly IgG2a and IgG3 antibody, although Th2 clones induced predominantly IgG1 and IgE antibody. We thus demonstrated that some Th1 as well as some Th2 clones can function in vivo to induce Ig synthesis. These results also suggest that a single type of T cell with a restricted lymphokine profile can induce both the terminal differentiation of B cells into antibody secreting cells as well as induce B cell memory and affinity maturation. Moreover, these results suggest that B cell memory and affinity maturation can occur either in the presence of Th2 clones secreting IL-4 but not IFN-gamma, or alternatively in the presence of Th1 clones secreting IFN-gamma but not IL-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号