首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have described a rapid spontaneous conversion in the stationary phase of Escherichia coli strain DOO (crp-) cells as a whole population to crp+ state (Sugino and Morita, 1994). In this paper we have tried to elucidate the molecular basis of this unidirectional conversion by cloning and sequencing of the crp gene in their crp+ and crp- states. We have found that in the original crp- strain, an IS2 element has been inserted between its original promoter and the coding region of the crp gene in the so-called orientation II (Ahmed et al., 1981), accompanied by an 11 bp deletion. Unexpectedly, the crp+ "revertants" derived from the crp- mutant had no difference in sequence from the crp-, either in the coding or the regulatory region. This suggests that a change at another locus, such that this change somehow activates the expression of the crp gene to the level of a normal crp+, is responsible for the apparent reversion from crp- to crp+.  相似文献   

2.
3.
The molecular basis of insecticide resistance in mosquitoes   总被引:25,自引:0,他引:25  
Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.  相似文献   

4.
The molecular basis of disease resistance in rice   总被引:24,自引:0,他引:24  
The rice gene Xa21 conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo), was isolated using a map-based cloning strategy. Compared with previously cloned genes, the structure of Xa21 represents a novel class of plant disease R genes encoding a putative receptor kinase (RK). This article proposes a model for the mode of action of Xa21 and summarizes our current knowledge of the modular basis of resistance in rice to bacterial leaf blight and blast.  相似文献   

5.
6.
The molecular basis of sulfonylurea herbicide resistance in tobacco   总被引:3,自引:0,他引:3       下载免费PDF全文
The enzyme acetolactate synthase (ALS) is the target enzyme for the sulfonylurea and imidazolinone herbicides. We describe the isolation and characterization of the ALS genes from two herbicide-resistant mutants, C3 and S4-Hra, of Nicotiana tabacum. There are two distinct ALS genes in tobacco which are 0.7% divergent at the amino acid sequence level. The C3 mutant has a single Pro-Gln replacement at amino acid 196 in one ALS gene. This gene is termed the class I gene and is equivalent to the SuRA locus. The S4-Hra mutant has two amino acid changes in the other ALS gene. This gene is termed the class II gene or the SuRB locus. The S4-Hra mutant includes a Pro-Ala substitution at amino acid 196 and a Trp-Leu substitution at amino acid 573. Gene reintroduction experiments have confirmed that these amino acid substitutions are responsible for the herbicide resistance phenotypes. Transgenic plants carrying these genes are highly resistant to sulfonylurea herbicide applications.  相似文献   

7.
A structural and functional understanding of resistance to the antibiotic kirromycin in Escherichia coli has been sought in order to shed new light on the functioning of the bacterial elongation factor Tu (EF-Tu), in particular its ability to act as a molecular switch. The mutant EF-Tu species G316D, A375T, A375V and Q124K, isolated by M13mp phage-mediated targeted mutagenesis, were studied. In this order the mutant EF-Tu species showed increasing resistance to the antibiotic as measured by poly(U)-directed poly(Phe) synthesis and intrinsic GTPase activities. The K'd values for kirromycin binding to mutant EF-Tu.GTP and EF-Tu.GDP increased in the same order. All mutation sites cluster in the interface of domains 1 and 3 of EF-Tu.GTP, not in that of EF-Tu.GDP. Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis. We conclude that the mutations result in two separate mechanisms of resistance to kirromycin. The first inhibits access of the antibiotic to its binding site on EF-Tu.GTP. A second mechanism exists on the ribosome, when mutant EF-Tu species release kirromycin and polypeptide chain elongation continues.  相似文献   

8.
9.
Aspartate transcarbamoylase from Escherichia coli has become a model system for the study of both homotropic and heterotropic interactions in proteins. Analysis of the X-ray structures of the enzyme in the absence and presence of substrates and substrate analogs has revealed sets of interactions that appear to stabilize either the 'T' or the 'R' states of the enzyme. Site-specific mutagenesis has been used to test which of these interactions are functionally important. By combining the structural data from X-ray crystallography, and the functional data from site-specific mutagenesis a model is proposed for homotropic cooperativity in aspartate transcarbamoylase that suggests that the allosteric transition occurs in a concerted fashion.  相似文献   

10.
DPS是一种广泛存在于原核生物中的DNA结合蛋白,它能够在细菌乏营养等多种应激状态下为细菌提供保护。大肠埃希菌DPS已经被深入研究。本文从蛋白结构和铁隔离、DNA结合,铁氧化酶活性,调节基因表达四个方面介绍大肠埃希菌DPS的基本特性和作用机制。  相似文献   

11.
12.
13.
L Shaw  F Grau  H R Kaback  J S Hong    C Walsh 《Journal of bacteriology》1975,121(3):1047-1055
Escherichia coli K-12 vinylglycolate-resistant mutants have been isolated and characterized. Two of the mutants, JSH 150 and JSH 151, have been determined to be double mutants, lacking both membrane-bound L-and D-lactate dehydrogenases. The lactate transport system is intact in all strains; both radioactive lactate and vinylglycolate are actively taken up. Likewise, the phosphoenolypyruvate-dependent phosphotransferase system for hexose uptake is active. Vinylglycolate, previously shown to inhibit the phosphoenolpyruvate-dependent phosphotransferase system, has very little effect in the double mutants. The extent of vinylglycolate inhibition in other mutants seems directly related to the activity of the lactate dehydrogenases. This indicates that vinylglycolate is oxidized to 2-keto-3-butenoate before inactivating the phosphoenolpyruvate-dependent phosphotransferase system. These results were found in whole cells and confirmed in isolated membrane vesicles.  相似文献   

14.
The molecular basis of resistance to the herbicide norflurazon   总被引:14,自引:0,他引:14  
We have cloned and sequenced a gene, pds, from the cyanobacterium Synechococcus PCC7942 that is responsible for resistance to the bleaching herbicide norflurazon. A point mutation in that gene, leading to an amino acid substitution from valine to glycine in its polypeptide product, was found to confer this resistance. Previous studies with herbicide-resistant mutants have indicated that this gene encodes phytoene desaturase (PDS), a key enzyme in the biosynthesis of carotenoids. A short amino acid sequence that is homologous to conserved motifs in the binding sites for NAD(H) and NADP(H) was identified in PDS, suggesting the involvement of these dinucleotides as cofactors in phytoene desaturation.  相似文献   

15.
16.
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.  相似文献   

17.
Fromm H  Edelman M  Aviv D  Galun E 《The EMBO journal》1987,6(11):3233-3237
The chloroplast genes coding for the 16S ribosomal RNA from several spectinomycin-resistant Nicotiana mutants were analyzed. Two classes of mutants were identified. In one class, a G to A base transition is found at position 1140 of the tobacco-chloroplast 16S rRNA gene, which eliminates an AatII restriction endonuclease site. This base transition is proximal to a mutation previously described for spectinomycin resistance in Escherichia coli. In the other class, a novel G to A transition is found at position 1012 of the 16S rRNA gene. Although the mutations in the two classes are 128 nucleotides apart, the secondary structure model for 16S rRNA suggests that the two mutated nucleotides are in spatial proximity on opposite sides of a conserved stem structure in the 3' region of the molecule. Phylogenetic evidence is presented linking this conserved stem with spectinomycin resistance in chloroplasts. Perturbation of the stem is proposed to be the molecular-genetic basis for rRNA-dependent spectinomycin resistance.  相似文献   

18.
19.
KatF is required for the expression of some 32 carbon starvation proteins in Escherichia coli including 6 previously identified as Pex. Mutants with the katF gene survive carbon and nitrogen starvation poorly. Many of the KatF-regulated starvation proteins are common to those induced by other stresses, and the mutant failed to develop starvation-mediated cross protection to osmotic, oxidative, and heat stresses. Furthermore, thermal resistance was not induced in the mutant by heat preadaptation, and it exhibited an altered pattern of protein synthesis at elevated temperature. Thus, KatF is a major switch that controls the starvation-mediated resistant state in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号