首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogenesis of mammalian 20 S proteasomes occurs via precursor complexes containing alpha and unprocessed beta subunits. A human homologue of the yeast proteasome maturation factor Ump1 was identified in 2D gels of 16 S precursor preparations and designated as POMP (proteasome maturation protein). We show that POMP is detected only in precursor fractions and not in fractions containing mature 20 S proteasome. Northern blot experiments revealed that expression of POMP is induced after treatment with interferon gamma. To analyse the role of the beta 5 propeptide for proper maturation and incorporation of the beta 5 subunit into the complex, human T2 cells, which highly express derivatives of the beta 5i subunit (LMP7), were studied. In contrast to yeast, the presence of the beta 5 propeptide is not essential for incorporation of LMP7 into the proteasome complex. Mutated LMP7 subunits either carrying the prosequence of beta 2i (LMP2) or containing a mutation in the active threonine site are incorporated like wild-type LMP7, while a LMP7 derivative lacking the prosequence completely is incorporated to a lesser extent. Although the absence of the prosequence does not affect incorporation of LMP7, its deletion leads to delayed proteasome maturation and thereby to an accumulation of precursor complexes. As a result of the precursor accumulation, an increased amount of the POMP protein can be detected in these cells.  相似文献   

2.
The quality control of proteins mediated by the plasticity of the proteasome system is regulated by the timely and flexible formation of this multisubunit proteolytic enzyme complex. Adaptable biogenesis of the 20S proteasome core complex is therefore of vital importance for adjusting to changing proteolytic requirements. However, the molecular mechanism and the cellular sites of mammalian proteasome formation are still unresolved. By using precursor complex-specific antibodies, we now show that the main steps in 20S core complex formation take place at the endoplasmic reticulum (ER). Thereby, the proteasome maturation protein (POMP)--an essential factor of mammalian proteasome biogenesis--interacts with ER membranes, binds to alpha1-7 rings, recruits beta-subunits stepwise and mediates the association of mammalian precursor complexes with the ER. Thus, POMP facilitates the main steps in 20S core complex formation at the ER to coordinate the assembly process and to provide cells with freshly formed proteasomes at their site of function.  相似文献   

3.
4.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   

5.
6.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

7.
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome‐specific chaperones, i.e., proteasome‐assembling chaperons 1–4 (PAC1–4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90‐Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4–5 subunits. This will provide insights into human proteasome‐assembling chaperones as potential anticancer drug targets.  相似文献   

8.
Hedgehog信号通路在胚胎发育、组织再生中发挥重要的作用,且与癌症发生发展密切相关. 其胞内调控组分Suppressor of Fused(SuFu)蛋白通过结合转录因子Gli(s),负调控该信号通路,但其作用的分子机制仍不甚清楚. 在本项研究中,以人SuFu作为诱饵蛋白,利用酵母双杂交技术成功地筛选到1个新的相互作用因子-蛋白酶体成熟蛋白(POMP). 通过免疫共沉淀、体外GST pull-down和免疫细胞化学实验验证其相互作用. 为了探究POMP与SuFu的相互作用对Hedgehog信号通路的影响,构建了POMP的过表达质粒和干扰质粒(miR-RNAi)以及转录因子Gli活性检测系统,即荧光素酶报告基因法,结果显示,过表达SuFu蛋白时POMP正调控Hedgehog信号通路,而下调POMP的表达则抑制Gli的活性. 该研究结果揭示了POMP新的生物学功能,为阐明Hedgehog信号通路的具体分子机制提供了新的线索.  相似文献   

9.
A novel protein complex called PC530 was purified concomitantly with proteasomes from oocytes of the starfish, Asterina pectinifera, by chromatography with DEAE-cellulose, phosphocellulose, Mono Q, and Superose 6 columns. The molecular mass of this complex was estimated to be 530 kDa by Ferguson plot analysis and about 500 kDa by Superose 6 gel filtration. Since the 1500-kDa proteasome fractions contain the PC530 subunits as well as the 20S proteasomal subunits, and also since the purified PC530 and the 20S proteasome were cross-linked with a bifunctional cross-linking reagent, it is thought that PC530 is able to associate with the 20S proteasome. The PC530 comprises six main subunits with molecular masses of 105, 70, 50, 34, 30, and 23 kDa. The 70-kDa subunit showed a sequence similarity to the S3/p58/Sun2/Rpn3p subunit of the 26S proteasome, whereas the other subunits showed little or no appreciable similarity to the mammalian and yeast regulatory subunits. These results indicate that starfish oocytes contain a novel 530-kDa protein complex capable of associating with the 20S proteasome, which is distinctly different from PA700 or the 19S regulatory complex in molecular size and subunit composition.  相似文献   

10.
The flagellar hook–basal body (HBB) complex of the Gram-positive bacterium Bacillus subtilis was purified and analysed by electron microscopy, gel electrophoresis, and amino acid sequencing of the major component proteins. The purified HBB complex consisted of the inner (M and S) rings, a rod and a hook. There were no outer (P and L) rings that are found in Gram-negative bacteria. The hook was 15 nm in thickness and 70 nm in length, which is thinner and longer than the hook of Salmonella typhimurium . The hook protein had an apparent molecular mass of 29 kDa, and its N-terminal sequence was identical to that of B. subtilis FlgG, which was previously reported as a rod protein. The sequence of the reported FlgG protein of B. subtilis is more closely related to that of FlgE (the hook protein) rather than FlgG (the rod protein) of S. typhimurium , in spite of the difference of the apparent molecular masses between the two hook proteins (29 kDa versus 42 kDa). The hook–basal body contained six major proteins (with apparent molecular masses of 82, 59, 35, 32, 29 and 20 kDa) and two minor proteins (23 kDa and 13 kDa), which consistently appeared from preparation to preparation. The N-terminus of each of these proteins was sequenced. Comparison with protein databases revealed the following polypeptide–gene correspondences: 82 kDa, fliF ; 59 kDa, flgK ; 35 kDa, orfF ; 32 kDa, yqhF ; 23 kDa, orf3 of the flaA locus; 20 kDa, flgB and flgC ; 13 kDa, not determined. The band at 20 kDa was a mixture of FlgB and FlgC, as revealed by two-dimensional gel analysis. Characteristic features of B. subtilis HBB are discussed in comparison with those of S. typhimiurium .  相似文献   

11.
The 26S proteasome, composed of the 20S core and the 19S regulatory complex, plays a central role in ubiquitin-dependent proteolysis by catalyzing degradation of polyubiquitinated proteins. In a search for proteins involved in regulation of the proteasome, we affinity purified the 19S regulatory complex from HeLa cells and identified a novel protein of 43 kDa in size as an associated protein. Immunoprecipitation analyses suggested that this protein specifically interacted with the proteasomal ATPases. Hence the protein was named proteasomal ATPase-associated factor 1 (PAAF1). Immunoaffinity purification of PAAF1 confirmed its interaction with the 19S regulatory complex and further showed that the 19S regulatory complex bound with PAAF1 was not stably associated with the 20S core. Overexpression of PAAF1 in HeLa cells decreased the level of the 20S core associated with the 19S complex in a dose-dependent fashion, suggesting that PAAF1 binding to proteasomal ATPases inhibited the assembly of the 26S proteasome. Proteasomal degradation assays using reporters based on green fluorescent protein revealed that overexpression of PAAF1 inhibited the proteasome activity in vivo. Furthermore, the suppression of PAAF1 expression that is mediated by small inhibitory RNA enhanced the proteasome activity. These results suggest that PAAF1 functions as a negative regulator of the proteasome by controlling the assembly/disassembly of the proteasome.  相似文献   

12.
Reticulocytes release small membrane vesicles termed exosomes during their maturation in erythrocytes. The transferrin receptor (TfR) is completely lost from the red cell surface by its segregation in the secreted vesicles where it interacts with the heat shock cognate 70 kDa protein (hsc70). We have now determined a region of the TfR that can potentially interact with hsc70. The peptide P1 (YTRFSLARQV) from the TfR cytosolic domain: (i) binds to hsc70 (ii) with an increased affinity in oxidative conditions, (iii) competes for binding of an unfolded protein to hsc70, and (iv) inhibits the interaction of hsc70 with a recombinant protein corresponding to the cytosolic domain of the receptor. This peptide encompasses the internalization motif (YTRF) of the receptor, and accordingly an affinity column made with the immobilized peptide retains hsc70 and also the AP2 adaptor complex. On the other hand, we show that AP2 is degraded by the proteasome system during reticulocyte maturation and that the presence of the proteasome inhibitor during in vitro red cell maturation inhibits AP2 degradation and specifically decreases TfR secretion via exosomes. Finally, coimmunoprecipitation of Alix with the exosomal TfR, and binding of P1 peptide to the Alix homolog PalA suggest that Alix also interacts with the YTRF motif and contributes to exosomal TfR sorting.  相似文献   

13.
The proteasome is the main protease for extralysosomal protein degradation in eukaryotic cells, and constitutes a sophisticated high molecular mass proteinase complex underlying a tightly coordinated expression and assembly of multiple subunits and subcomplexes. Here we show that continuous inhibition of proteasomal chymotrypsin-like peptidase activity by the proteasome inhibitor bortezomib induces in human Namalwa Burkitt lymphoma cells increased de novo biogenesis of proteasomes accompanied by increased expression of the proteasome maturation protein POMP, increased expression of 19S-20S-19S proteasomes, and abrogation of expression of beta 1i, beta 2i and beta 5i immunosubunits and PA28 in favor of increased expression of constitutive proteolytic beta1, beta2 and beta 5 subunits and 19S regulatory complexes. These alterations of proteasome expression and subunit composition are accompanied by an increase in proteasomal caspase-like, trypsin-like and chymotrypsin-like peptidase activities, not inhibitable by high doses of bortezomib. Cells harboring these proteasomal alterations display rapid proliferation and cell cycle progression, and acquire resistance to apoptosis induced by proteasome inhibitors, gamma-irradiation and staurosporine. This acquired apoptosis resistance is accompanied by de novo expression of anti-apoptotic Hsp27 protein and the loss of ability to accumulate and stabilize pro-apoptotic p53 protein. Thus, increased expression, altered subunit composition and increased activity of proteasomes constitute a hitherto unknown adaptive and autoregulatory feedback mechanism to allow cells to survive the lethal challenge of proteasome inhibition and to establish a hyperproliferative and apoptosis-resistant phenotype.  相似文献   

14.
The objective of this work was to apply low cost materials, agricultural residues, to the purification of xylanase. The results showed that crude extracellular, cellulase-free xylanase of an alkaliphilic Bacillus sp. strain K-8 could be purified in a single step by affinity adsorption–desorption on a corn husk column using a high flow rate, under the conditions 25 mM acetate buffer, pH 4.0, 4 °C, which prevented the hydrolysis of xylan by xylanase. After adsorption, the xylanase was eluted from the enzyme–corn husk complex with 500 mM Urea. The enzyme was purified 5.3-fold to homogeneity from culture supernatant. The molecular weight of the purified enzyme was 24 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity and recovery yield after purification were 25.4 U/mg protein and 42.3%, respectively.  相似文献   

15.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

16.
The proteasome (multicatalytic protease complex), a high molecular weight protein complex, has been purified from spinach leaves by successive chromatography on DEAE-cellulose, Bio-Gel A-1.5m, DEAE-TOYOPEARL 650C, and DEAE-5PW. The molecular mass was estimated to be 850 kDa by gel filtration. Polyacrylamide gel electrophoresis of the proteasome gave a single protein band under nondenaturing conditions and at least 10 bands in the range of 21-32 kDa in the presence of sodium dodecyl sulfate. By electron microscopy after negative staining with uranyl acetate, the proteasome from spinach appeared as symmetrical ring-shaped particles. The substrate specificity of proteasomes indicates that they contain at least three types of activity, namely, chymotrypsin-like, Staphylococcus aureus V8 protease-like, and trypsin-like activities. The former two activities were enhanced by poly-L-lysine or sodium dodecyl sulfate. Moreover, we examined the immunological reactivities of proteasomes from various eukaryotes. As a result, cross-immunoreactivities of some subunits were observed. These properties of the proteasome are similar to those of proteasomes isolated from various other eukaryotic sources.  相似文献   

17.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

18.
The extraction and purification of phycocyanin from Calothrix sp., cyanobacteria isolated from rice fields in Cuernavaca, Morelos, Mexico is described. Phycocyanin was extracted with 2 mg of lysozyme/g wet biomass, and purified by anion chromatography using Q-Sepharose fast-flow (Pharmacia®, 1.5 cm×10 cm) column and hydrophobic interaction chromatography with methyl macro-prep (Bio-Rad®, 1.5 cm×20 cm) column. The purified protein showed a pI of 5.2 and has two subunits with apparent molecular mass of 21–17 kDa each. The estimated molecular mass of native purified phycocyanin was 114 kDa, suggesting a stereochemistry of (β)3.  相似文献   

19.
The proteasome is a multicatalytic protease complex present in all eukaryotic cells, which plays a critical role in regulating essential cellular processes. During the immune response to pathogens, stimulation by γ interferon induces the production of a special form of proteasome, the immunoproteasome. Inappropriate increase of proteosomal activity has been linked to inflammatory and autoimmune diseases. Selective inhibition of the immunoproteasome specific LMP7 subunit was shown to block inflammatory cytokine secretion in human PBMC, thus making the immunoproteasome an interesting target to fight autoimmune diseases. This paper describes a method for purification and separation of the 20S immunoproteasomes from the constitutive proteasome, which is ubiquitously present in all cells, based on hydrophobic interaction chromatography. The purified immunoproteasome showed several bands, between 20–30 kDa, when subjected to polyacrylamide gel electrophoresis under denaturing conditions. The purified proteasome complexes had a molecular mass of approximately 700 kDa as estimated by gel filtration. Identification of the catalytic subunits in the immunoproteasomes was performed in Western blot with antibodies directed specifically against either the constitutive or the immunoproteasome subunits. The purified immunoproteasome possessed all three protease activities associated with the proteasome complex. LC/MS analysis confirmed the presence of the three immunoproteasome catalytic subunits in the purified immunoproteasome.  相似文献   

20.
This paper describes the purification of a 47 kDa protein from Xenopus laevis oocytes that becomes phosphorylated when the oocytes undergo meiotic maturation. This protein (p47) is part of a high molecular mass complex containing at least two other proteins of molecular mass 30 and 36 kDa. This complex can be isolated from stage VI oocytes before maturation. We obtained a pattern for phosphopeptides in p47 phosphorylated in vivo very similar to that of the purified protein phosphorylated in vitro by p34cdc2 (a H1 kinase which is a component of the M-phase promoting factor) and [gamma-32P]ATP. Therefore, the purified p47, already described as a marker of MPF activity, is the first reported in vivo substrate for the cell division control kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号