首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro DNA amplification methods, such as polymerase chain reaction (PCR), rely on synthetic oligonucleotide primers for initiation of the reaction. In vivo, primers are synthesized on-template by DNA primase. The bacteriophage T7 gene 4 protein (gp4) has both primase and helicase activities. In this study, we report the development of a primase-based Whole Genome Amplification (pWGA) method, which utilizes gp4 primase to synthesize primers, eliminating the requirement of adding synthetic primers. Typical yield of pWGA from 1 ng to 10 ng of human genomic DNA input is in the microgram range, reaching over a thousand-fold amplification after 1 h of incubation at 37 degrees C. The amplification bias on human genomic DNA is 6.3-fold among 20 loci on different chromosomes. In addition to amplifying total genomic DNA, pWGA can also be used for detection and quantification of contaminant DNA in a sample when combined with a fluorescent reporter dye. When circular DNA is used as template in pWGA, 10(8)-fold of amplification is observed from as low as 100 copies of input. The high efficiency of pWGA in amplifying circular DNA makes it a potential tool in diagnosis and genotyping of circular human DNA viruses such as human papillomavirus (HPV).  相似文献   

2.
Microarray technology provides the opportunity to identify thousands of microbial genes or populations simultaneously, but low microbial biomass often prevents application of this technology to many natural microbial communities. We developed a whole-community genome amplification-assisted microarray detection approach based on multiple displacement amplification. The representativeness of amplification was evaluated using several types of microarrays and quantitative indexes. Representative detection of individual genes or genomes was obtained with 1 to 100 ng DNA from individual or mixed genomes, in equal or unequal abundance, and with 1 to 500 ng community DNAs from groundwater. Lower concentrations of DNA (as low as 10 fg) could be detected, but the lower template concentrations affected the representativeness of amplification. Robust quantitative detection was also observed by significant linear relationships between signal intensities and initial DNA concentrations ranging from (i) 0.04 to 125 ng (r2 = 0.65 to 0.99) for DNA from pure cultures as detected by whole-genome open reading frame arrays, (ii) 0.1 to 1,000 ng (r2 = 0.91) for genomic DNA using community genome arrays, and (iii) 0.01 to 250 ng (r2 = 0.96 to 0.98) for community DNAs from ethanol-amended groundwater using 50-mer functional gene arrays. This method allowed us to investigate the oligotrophic microbial communities in groundwater contaminated with uranium and other metals. The results indicated that microorganisms containing genes involved in contaminant degradation and immobilization are present in these communities, that their spatial distribution is heterogeneous, and that microbial diversity is greatly reduced in the highly contaminated environment.  相似文献   

3.
A method was developed for genome analysis of phytoplasmas, bacterial plant pathogens that cannot be cultivated in vitro in cell-free media. The procedure includes a CsCl-bisbenzimide gradient buoyant centrifugation followed by polymerase chain reaction (PCR)-mediated whole genome amplification. The latter step involves digestion of the DNA by a restriction enzyme with an A/T-rich recognition sequence. Due to the different A/T content in the DNA of the pathogen and its plant host, the fragments originating from phytoplasma are shorter and are preferentially amplified in the PCR reaction. Products obtained were cloned and screened by dot-blot hybridization. Results showed that about 90% of recombinant clones appeared to harbor phytoplasma specific DNA inserts. Sequencing of randomly selected clones was carried out and comparison with the NCBI database confirmed the bacterial origin for the sequences, which have been assigned a putative function. The origin of the recombinant clones was further confirmed by the generation of specific amplicons from the phytoplasma-infected plant and not from the healthy control, using PCR primers devised from the sequences of the recombinant clones. This method could be used for genome-wide comparisons between phytoplasmas.  相似文献   

4.
Kang MJ  Yu H  Kim SK  Park SR  Yang I 《PloS one》2011,6(12):e28661
Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.  相似文献   

5.
A new approach, termed whole-community RNA amplification (WCRA), was developed to provide sufficient amounts of mRNAs from environmental samples for microarray analysis. This method employs fusion primers (six to nine random nucleotides with an attached T7 promoter) for the first-strand synthesis. The shortest primer (T7N6S) gave the best results in terms of the yield and representativeness of amplification. About 1,200- to 1,800-fold amplification was obtained with amounts of the RNA templates ranging from 10 to 100 ng, and very representative detection was obtained with 50 to 100 ng total RNA. Evaluation with a Shewanella oneidensis Deltafur strain revealed that the amplification method which we developed could preserve the original abundance relationships of mRNAs. In addition, to determine whether representative detection of RNAs can be achieved with mixed community samples, amplification biases were evaluated with a mixture containing equal quantities of RNAs (100 ng each) from four bacterial species, and representative amplification was also obtained. Finally, the method which we developed was applied to the active microbial populations in a denitrifying fluidized bed reactor used for denitrification of contaminated groundwater and ethanol-stimulated groundwater samples for uranium reduction. The genes expressed were consistent with the expected functions of the bioreactor and groundwater system, suggesting that this approach is useful for analyzing the functional activities of microbial communities. This is one of the first demonstrations that microarray-based technology can be used to successfully detect the activities of microbial communities from real environmental samples in a high-throughput fashion.  相似文献   

6.
To screen multiple loci in small purified samples of diploid and aneuploid cells a PCR-based technique of whole genome amplification was adapted to the study of somatic lesions. DNA samples from different numbers of flow-sorted diploid and aneuploid cells from biopsies were amplified with a degenerate 15mer primer. Aliquots of these reactions were then used in locus-specific reactions using a single round of PCR cycles with individual sets of primers representing polymorphic markers for different regions. As a result, polymorphic markers for different chromosomal regions, including VNTRs and dinucleotide repeats, can be used to perform up to 30 locus-specific PCR assays with a single sample obtained from fewer than 1000 cells.  相似文献   

7.
Luhe AL  Tan L  Wu J  Zhao H 《Biotechnology letters》2011,33(5):1007-1011
Saccharomyces cerevisiae was transformed for higher ethanol tolerance by error-prone whole genome amplification. The resulting PCR products were transformed back to the parental strain for homologous recombination to create a library of mutants with the perturbed genomic networks. A few rounds of transformation led to the isolation of mutants that grew in 9% (v/v) ethanol and 100 g glucose l−1 compared to untransformed yeast which grew only at 6% (v/v) ethanol and 100 g glucose l−1.  相似文献   

8.
9.
10.
Single cell genomics is a powerful and increasingly popular tool for studying the genetic make-up of uncultured microbes. A key challenge for successful single cell sequencing and analysis is the removal of exogenous DNA from whole genome amplification reagents. We found that UV irradiation of the multiple displacement amplification (MDA) reagents, including the Phi29 polymerase and random hexamer primers, effectively eliminates the amplification of contaminating DNA. The methodology is quick, simple, and highly effective, thus significantly improving whole genome amplification from single cells.  相似文献   

11.
12.
The use of whole genome amplification in the study of human disease   总被引:6,自引:0,他引:6  
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications.  相似文献   

13.
This study describes a novel approach to identify unique genomic DNA sequences from the unsequenced strain C. jejuni ATCC 43431 by comparison with the sequenced strain C. jejuni NCTC 11168. A shotgun DNA microarray was constructed by arraying 9,600 individual DNA fragments from a C. jejuni ATCC 43431 genomic library onto a glass slide. DNA fragments unique to C. jejuni ATCC 43431 were identified by competitive hybridization to the array with genomic DNA of C. jejuni NCTC 11168. The plasmids containing unique DNA fragments were sequenced, allowing the identification of up to 130 complete and incomplete genes. Potential biological roles were assigned to 66% of the unique open reading frames. The mean G+C content of these unique genes (26%) differs significantly from the G+C content of the entire C. jejuni genome (30.6%). This suggests that they may have been acquired through horizontal gene transfer from an organism with a G+C content lower than that of C. jejuni. Because the two C. jejuni strains differ by Penner serotype, a large proportion of the unique ATCC 43431 genes encode proteins involved in lipooligosaccharide and capsular biosynthesis, as expected. Several unique open reading frames encode enzymes which may contribute to genetic variability, i.e., restriction-modification systems and integrases. Interestingly, many of the unique C. jejuni ATCC 43431 genes show identity with a possible pathogenicity island from Helicobacter hepaticus and components of a potential type IV secretion system. In conclusion, this study provides a valuable resource to further investigate Campylobacter diversity and pathogenesis.  相似文献   

14.
15.
Genome walking is a commonly used technique for the identification of DNA sequences adjacent to known regions. Despite the development of various genome walking methods, nonspecific products are often produced in certain circumstances, especially when GC-rich DNA sequences are dealt with. To effectively resolve such technical issues, a simple nested polymerase chain reaction-based genome walking method has been developed by implementing a progressively decreased annealing temperature from 70°C to 47.5°C in the first round of amplification and a high annealing temperature of 65°C in the second round of amplification. During the entire process, a lower ramp rate of 1.5°C s−1 and cooling rate of 2.5°C s−1 are performed to reach the annealing temperature. Using this method, we successfully obtained the upstream and downstream sequences of three GC-rich genes involved in the biosynthetic pathways of secondary metabolites from two bacterial genomes. The efficient amplification of DNA target longer than 1.5 Kb with GC content up to 75.0% indicates that the present technique could be a valuable tool for the investigation of biosynthetic pathways of various secondary metabolites.  相似文献   

16.
Impact of whole genome amplification on analysis of copy number variants   总被引:1,自引:0,他引:1  
Large-scale copy number variants (CNVs) have recently been recognized to play a role in human genome variation and disease. Approaches for analysis of CNVs in small samples such as microdissected tissues can be confounded by limited amounts of material. To facilitate analyses of such samples, whole genome amplification (WGA) techniques were developed. In this study, we explored the impact of Phi29 multiple-strand displacement amplification on detection of CNVs using oligonucleotide arrays. We extracted DNA from fresh frozen lymph node samples and used this for amplification and analysis on the Affymetrix Mapping 500k SNP array platform. We demonstrated that the WGA procedure introduces hundreds of potentially confounding CNV artifacts that can obscure detection of bona fide variants. Our analysis indicates that many artifacts are reproducible, and may correlate with proximity to chromosome ends and GC content. Pair-wise comparison of amplified products considerably reduced the number of apparent artifacts and partially restored the ability to detect real CNVs. Our results suggest WGA material may be appropriate for copy number analysis when amplified samples are compared to similarly amplified samples and that only the CNVs with the greatest significance values detected by such comparisons are likely to be representative of the unamplified samples.  相似文献   

17.
The use of municipal solid waste as feedstock for biogas production offers an interesting possibility for waste treatment with the beneficial effect of gaining a green energy source. The involved processes are very complex, and many different organisms connected via a dynamic food web are associated with them. These complex interactions within these microbial communities are still not clearly understood. Therefore, a phospholipid fatty acid (PLFA) profile analysis method, well established in aerobic but still not as common in anaerobic systems, was used to throw some light on this matter. In the present investigation, a 750 m3 biogas reactor (Roppen, Austria) was monitored over a half-year period. During this period, four different phases in terms of gas production could be determined: low (I), increasing (II), high (III), and decreasing (IV) gas production. In combination with the PLFA profiles, we were able to identify changes in the microbial community associated with these phases.  相似文献   

18.
19.
While DNA of good quality and sufficient amount can be obtained easily from whole blood, buccal swabs, surgical specimens, or cell lines, these DNA-rich sources are not always available. This is particularly the case in studies for which biological specimens were collected when genotyping assays were not widely available. In those studies, serum or plasma is often the only source of DNA. Newly developed whole genome amplification (WGA) methods, based on phi29 polymerase, may play a significant role in recovering DNA in such instances. We tested a total of 528 plasma samples kept in storage at -40 degrees C for approximately 10 years for 8 single nucleotide polymorphisms (SNPs) using the 5' exonuclease (TaqMan) assay. These specimens yielded undetectable levels of DNA following extraction with an affinity column but produced an average 52.7 microg (standard deviation of 31.2 microg) of DNA when column-extracted DNA was used as a template for WGA. This increased the genotyping success rate from 54% to 93%. There were only 3 disagreements out of 364 paired genotyping results for pre- and post-WGA DNAs, indicating an error rate of 0.82%. These results are encouraging for expanding the use of poor DNA resources in genotyping studies.  相似文献   

20.
Three whole-community genome amplification methods, Bst, REPLI-g, and Templiphi, were evaluated using a microarray-based approach. The amplification biases of all methods were <3-fold. For pure-culture DNA, REPLI-g and Templiphi showed less bias than Bst. For community DNA, REPLI-g showed the least bias and highest number of genes, while Bst had the highest success rate and was suitable for low-quality DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号