首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mucus layer covering the gastrointestinal tract is the first point of contact of the intestinal microbiota with the host. Cell surface macromolecules are critical for adherence of commensal bacteria to mucus but structural information is scarce. Here we report the first molecular and structural characterization of a novel cell‐surface protein, Lar_0958 from Lactobacillus reuteri JCM 1112T, mediating adhesion of L. reuteri human strains to mucus. Lar_0958 is a modular protein of 133 kDa containing six repeat domains, an N‐terminal signal sequence and a C‐terminal anchoring motif (LPXTG). Lar_0958 homologues are expressed on the cell‐surface of L. reuteri human strains, as shown by flow‐cytometry and immunogold microscopy. Adhesion of human L. reuteri strains to mucus in vitro was significantly reduced in the presence of an anti‐Lar_0958 antibody and Lar_0958 contribution to adhesion was further confirmed using a L. reuteri ATCC PTA 6475 lar_0958 KO mutant (6475‐KO). The X‐ray crystal structure of a single Lar_0958 repeat, determined at 1.5 Å resolution, revealed a divergent immunoglobulin (Ig)‐like β‐sandwich fold, sharing structural homology with the Ig‐like inter‐repeat domain of internalins of the food borne pathogen Listeria monocytogenes. These findings provide unique structural insights into cell‐surface protein repeats involved in adhesion of Gram‐positive bacteria to the intestine.  相似文献   

2.
Lactobacillus reuteri mucus-binding protein (MUB) is a cell-surface protein that is involved in bacterial interaction with mucus and colonization of the digestive tract. The 353-kDa mature protein is representative of a broadly important class of adhesins that have remained relatively poorly characterized due to their large size and highly modular nature. MUB contains two different types of repeats (Mub1 and Mub2) present in six and eight copies, respectively, and shown to be responsible for the adherence to intestinal mucus. Here we report the 1.8-Å resolution crystal structure of a type 2 Mub repeat (184 amino acids) comprising two structurally related domains resembling the functional repeat found in a family of immunoglobulin (Ig)-binding proteins. The N-terminal domain bears striking structural similarity to the repeat unit of Protein L (PpL) from Peptostreptococcus magnus, suggesting binding in a non-immune Fab-dependent manner. A distorted PpL-like fold is also seen in the C-terminal domain. As with PpL, Mub repeats were able to interact in vitro with a large repertoire of mammalian Igs, including secretory IgA. This hitherto undetected activity is consistent with the current model that antibody responses against commensal flora are of broad specificity and low affinity.  相似文献   

3.
Mucus-bacterial interactions in the gastrointestinal tract and their impact on subsequent enteric infections are poorly delineated. In the present study, we have examined the binding ofSalmonella typhimurium to rat intestinal mucus and characterized a mucus protein (Mucus-Rs) which specifically binds to S. typhimurium. Both virulent (1402/84), and avirulent (SF 1835) S. typhimurium were observed to bind to crude mucus, however, the virulent strain showed 6 fold more binding as compared to avirulent strain. Fractionation of crude mucus on sepharose CL-6B resolved it into three major peaks. Maximal bacterial binding was observed with a high mol. wt. glycoprotein corresponding to neutral mucin. SDS-PAGE of purified protein (termed Mucus-Rs) under non reducing conditions showed it to be a homogenous glycoprotein (mol. wt. 250 kDa), while under reducing conditions, three bands corresponding to mol. wt. of 118,75 and 60 kDa were observed. Pretreatment of Mucus-Rs with pronase, trypsin and sodium metaperiodate markedly inhibited bacterial binding. GLC analysis of Mucus-Rs showed it to contain Mannose, Glucose, Galactose, Glucosamine, Galactosamine and Sialic acid as main sugars. Competitive binding in the presence of various sugars and lectins indicated the involvement of mannose in the mucus-bacterial interactions. The Mucus-Rs binding was highly specific for S. typhimurium; no significant binding was seen with E.coliand V. cholerae. Thus, we conclude that S. typhimurium specifically binds to a 250 kDa neutral mucin of intestinal tract. This binding appears to occur via specific adhesin-receptor interactions involving bacterial pili and mannose of neutral mucin.  相似文献   

4.
The gastrointestinal tract (GIT) is lined by a layer of mucus formed by mucin glycoproteins. This layer constitutes a physical and chemical barrier between the intestinal contents and the underlying epithelia. In addition to this protective role, mucins harbor glycan-rich domains that provide preferential binding sites for pathogens and commensal bacteria. Although mucus-microbial interactions in the GIT play a crucial role in determining the outcome of relationships of both commensal and pathogens with the host, the adhesins and ligands involved in the interaction are poorly delineated. This review focuses on the current knowledge of microbial adhesins to gastrointestinal mucus and mucus components.  相似文献   

5.
6.
Imaging living cells and organs requires innovative, specific, efficient, and well tolerated fluorescent markers targeting cellular components. Such tools will allow proceeding to the dynamic analysis of cells and the adaptation of tissues to environmental cues. In this study, we have identified and synthesized a novel non-toxic fluorescent marker allowing a specific fluorescent staining of the human colonic mucus. Our strategy to identify a molecule able to specifically bind to the human colonic mucus was on the basis of the mucus adhesion properties of commensal bacteria. We identified and characterized the mucus-binding property of a 70-amino acid domain (MUB(70)) expressed on the surface of Lactobacillus strains. The chemical synthesis of MUB(70) was achieved using the human commensal bacterium Lactobacillus reuteri AF120104 protein as a template. The synthesized Cy5-conjugated MUB(70) marker specifically stained the colonic mucus on fixed human, rabbit, and guinea pig tissues. Interestingly, murine tissue was not stained, suggesting significant differences in the composition of the murine colonic mucus. In addition, this marker stained the mucus of living cultured human colonic cells (HT29-MTX) and human colonic tissue explants. Using a biotinylated derivative of MUB(70), we demonstrated that this peptide binds specifically to Muc2, the most abundant secreted mucin, through its glycosylated moieties. Hence, Cy5-MUB(70) is a novel and specific fluorescent marker for mammalian colonic mucus. It may be used for live imaging analysis but also, as demonstrated in this study, as a marker for the diagnosis and the prognosis of colonic mucinous carcinomas.  相似文献   

7.
To avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin‐covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M‐SHIME (mucosal‐SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short‐term assays confirmed the strong mucin‐binding of both L. mucosae and LGG compared with P. acidilactici. The mucosal environment also increased long‐term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo‐like microbial communities in such dynamic, long‐term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease.  相似文献   

8.
Tic110 is a major component of the chloroplast protein import translocon. Two functions with mutually exclusive structures have been proposed for Tic110: a protein‐conducting channel with six transmembrane domains and a scaffold with two N‐terminal transmembrane domains followed by a large soluble domain for binding transit peptides and other stromal translocon components. To investigate the structure of Tic110, Tic110 from Cyanidioschyzon merolae (CmTic110) was characterized. We constructed three fragments, CmTic110A, CmTic110B and CmTic110C, with increasing N‐terminal truncations, to perform small‐angle X‐ray scattering (SAXS) and X‐ray crystallography analyses and Dali structural comparison. Here we report the molecular envelope of CmTic110B and CmTic110C determined by SAXS, and the crystal structure of CmTic110C at 4.2 Å. Our data indicate that the C‐terminal half of CmTic110 possesses a rod‐shaped helix‐repeat structure that is too flattened and elongated to be a channel. The structure is most similar to the HEAT‐repeat motif that functions as scaffolds for protein–protein interactions.  相似文献   

9.
Pathogenic Leptospira bacteria are the causative agents of leptospirosis, a zoonotic disease affecting animals and humans worldwide. These pathogenic species have the ability to rapidly cross host tissue barriers by a yet unknown mechanism. A comparative analysis of pathogens and saprophytes revealed a higher abundance of genes encoding proteins with leucine‐rich repeat (LRR) domains in the genomes of pathogens. In other bacterial pathogens, proteins with LRR domains have been shown to be involved in mediating host cell attachment and invasion. One protein from the pathogenic species Leptospira interrogans, LIC10831, has been previously analysed via X‐ray crystallography, with findings suggesting it may be an important bacterial adhesin. Herein we show that LIC10831 elicits an antibody response in infected animals, is actively secreted by the bacterium, and binds human E‐ and VE‐cadherins. These results provide biochemical and cellular evidences of LRR protein‐mediated host–pathogen interactions and identify a new multireceptor binding protein from this infectious Leptospira species.  相似文献   

10.
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1‐11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane‐spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O‐layer inserted in the outer membrane and the I‐layer inserted in the inner membrane. While the structure of the O‐layer has been solved by X‐ray crystallography, there is no detailed structural information on the I‐layer. Using high‐resolution cryo‐electron microscopy and molecular modelling combined with biochemical approaches, we determined the I‐layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.  相似文献   

11.
Aims: To identify and characterize adhesion‐associated proteins in the potential probiotic Lactobacillus fermentum BCS87. Methods and Results: Protein suspensions obtained from the treatment of Lact. fermentum BCS87 with 1 mol 1?1 LiCl were analysed by Western blotting using HRP‐labelled porcine mucus and mucin. Two adhesion‐associated proteins with relative molecular weight of 29 and 32 kDa were identified. The N‐terminal and internal peptides of the 32 kDa protein (32‐Mmubp) were sequenced, and the corresponding gene (32‐mmub) was found by inverse polymerase chain reaction. The complete nucleotide sequence of 32‐mmub revealed an open reading frame of 903 bp encoding a primary protein of 300 amino acids and a mature protein of 272 residues. A basic local alignment search showed 47–99% identity to solute‐binding components of ATP binding cassette transporter proteins in Lactobacillus, Streptococcus and Clostridium. An OpuAC‐conserved domain was identified and phylogenetic relationship analysis confirmed that 32‐Mmubp belongs to the OpuAC family. Conclusions: Adhesion of Lact. fermentum BCS87 appeared to be mediated by two surface‐associated proteins. 32‐Mmubp is a component of ABC transporter system that also functions as an adhesin. Significance and Impact of the Study: Characterization of 32‐Mmubp and 32‐mmub will contribute to understanding the host–bacteria interactions of Lact. fermentum with the intestinal tract of pigs.  相似文献   

12.
Algal polysaccharides of diverse structures are one of the most abundant carbon resources for heterotrophic, marine bacteria with coevolved digestive enzymes. A putative sulfo‐mannan polysaccharide utilization locus, which is conserved in marine flavobacteria, contains an unusual GH99‐like protein that lacks the conserved catalytic residues of glycoside hydrolase family 99. Using X‐ray crystallography, we structurally characterized this protein from the marine flavobacterium Ochrovirga pacifica to help elucidate its molecular function. The structure reveals the absence of potential catalytic residues for polysaccharide hydrolysis, which—together with additional structural features—suggests this protein may be noncatalytic and involved in carbohydrate binding.  相似文献   

13.
Background: Helicobacter pylori colonize the mucus layer that covers the gastric epithelium and can cause gastritis, ulcers, and gastric cancer. Recently, Lactobacillus sp. have also been found to reside in this niche permanently. This study compares adhesive properties and proliferation of co‐isolated lactobacilli and H. pylori in the presence of mucins and investigates possibilities for lactobacilli‐mediated inhibition of H. pylori. Materials and methods: Binding and proliferation of four H. pylori and four Lactobacillus strains, simultaneously isolated after residing in the stomachs of four patients for >4 years, to human gastric mucins were investigated using microtiter‐based methods. Results: The H. pylori strains co‐isolated with lactobacilli exhibited the same mucin binding properties as demonstrated for H. pylori strains previously. In contrast, no binding to mucins was detected with the Lactobacillus strains. Proliferation of mucin‐binding H. pylori strains was stimulated by the presence of mucins, whereas proliferation of non‐binding H. pylori and Lactobacillus strains was unaffected. Associative cultures of co‐isolated H. pylori and Lactobacillus strains showed no inhibition of H. pylori proliferation because of the presence of whole bacteria or supernatant of lactobacilli. Conclusions: The presence of lactobacilli in the stomach did not select for different mucin binding properties of H. pylori, and Lactobacillus sp. did neither compete for binding sites nor inhibit the growth of co‐isolated H. pylori. The effects of human gastric mucins on H. pylori proliferation vary between strains, and the host–bacteria interaction in the mucus niche thus depends on both the H. pylori strain and the microenvironment provided by the host mucins.  相似文献   

14.
ME Johansson 《PloS one》2012,7(7):e41009
The enormous bacterial load and mechanical forces in colon create a special requirement for protection of the epithelium. In the distal colon, this problem is largely solved by separation of the bacteria from the epithelium by a firmly attached inner mucus layer. In addition, an outer mucus layer entraps bacteria to be cleared by distal transport. The mucus layers contain a network of Muc2 mucins as the main structural component. Here, the renewal rate of the inner protective mucus layer was studied as well as the production and secretion of Muc2 mucin in the distal colon. This was performed by intraperitoneal injection of N-azidoacetyl-galactosamine (GalNAz) that was in vivo incorporated during biosynthesis of O-glycosylated glycoproteins. The only gel-forming mucin produced in the colon is the Muc2 mucin and as it carries numerous O-glycans, the granulae of the goblet cells producing Muc2 mucin were intensely stained. The GalNAz-labeled glycoproteins were first observed in the Golgi apparatus of most cells. Goblet cells in the luminal surface epithelium had the fastest biosynthesis of Muc2 and secreted material already three hours after labeling. This secreted GalNAz-labeled Muc2 mucin formed the inner mucus layer. The goblet cells along the crypt epithelium accumulated labeled mucin vesicles for a longer period and secretion of labeled Muc2 mucin was first observed after 6 to 8 h. This study reveals a fast turnover (1 h) of the inner mucus layer in the distal colon mediated by goblet cells of the luminal surface epithelium.  相似文献   

15.
Human lung cells exposed to pathogenic bacteria upregulate the production of mucin, the major macromolecular component of mucus. Generally this upregulation is beneficial for the host, however, in the lungs of cystic fibrosis patients, overproduction of mucin can lead to the plugging of pulmonary airways. Mucus plugging impedes airflow and creates an environment that is highly compartmentalized: those bacteria within the mucus layer are shielded from high doses of antibiotics whereas those outside the mucus are exposed. These conditions augment mutation rate and the development of drug resistance in bacteria that colonize the lungs of cystic fibrosis patients. While therapeutic inhibition of mucin induction would improve airflow and reduce antibiotic resistance in these patients, the challenge is to develop drugs that block excessive mucin production while leaving beneficial aspects of the response intact. To do this, we must understand the molecular mechanisms underlying mucin production. Here we review the signal transduction pathways that control mucin production in response to Gram-positive and Gram-negative bacteria.  相似文献   

16.
The acyl‐AMP forming family of adenylating enzymes catalyze two‐step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X‐ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl‐CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl‐CoA synthetase and 4‐chlorobenzoate:CoA ligase. Most interestingly, the acyl‐binding pocket of the new structure is compared with other acyl‐ and aryl‐CoA synthetases. A comparison of the acyl‐binding pocket of the acyl‐CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl‐binding pocket. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.  相似文献   

18.
Contrary to first appearances, mucus structural biology is not an oxymoron. Though mucus hydrogels derive their characteristics largely from intrinsically disordered, heavily glycosylated polypeptide segments, the secreted mucin glycoproteins that constitute mucus undergo an orderly assembly process controlled by folded domains at their termini. Recent structural studies revealed how mucin complexes promote disulphide-mediated polymerization to produce the mucus gel scaffold. Additional protein–protein and protein-glycan interactions likely tune the mesoscale properties, stability, and activities of mucins. Evidence is emerging that even intrinsically disordered glycosylated segments have specific structural roles in the production and properties of mucus. Though soft-matter biophysical approaches to understanding mucus remain highly relevant, high-resolution structural studies of mucins and other mucus components are providing new perspectives on these vital, protective hydrogels.  相似文献   

19.
Adhesion of bacteria to mucosal surfaces and epithelial cells is one of the key features for the selection of probiotics. In this study, we assessed the adhesion property of Lactococcus lactis subsp. lactis BGKP1 based on its strong autoaggregation phenotype and the presence of the mucin binding protein (MbpL). Genes involved in aggregation (aggL) and possible interaction with mucin (mbpL), present on the same plasmid pKP1, were previously separately cloned in the plasmid pAZIL. In vivo and in vitro experiments revealed potentially different physiological roles of these two proteins in the process of adherence to the intestine during the passage of the strain through the gastrointestinal tract. We correlated the in vitro and in vivo aggregation of the BGKP1-20 carrying plasmid with aggL to binding to the colonic mucus through nonspecific hydrophobic interactions. The expression of AggL on the bacterial cell surface significantly increased the hydrophobicity of the strain. On the other hand, the presence of AggL in the strain reduced its ability to adhere to the ileum. Moreover, MbpL protein showed an affinity to bind gastric type mucin proteins such as MUC5AC. This protein did not contribute to the binding of the strain to the ileal or colonic part of the intestine. Different potential functions of lactococcal AggL and MbpL proteins in the process of adhesion to the gastrointestinal tract are proposed.  相似文献   

20.
Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild‐type specific pathogen‐free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号