首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CarD-CarG complex controls various cellular processes in the bacterium Myxococcus xanthus including fruiting body development and light-induced carotenogenesis. The CarD N-terminal domain, which defines the large CarD_CdnL_TRCF protein family, binds to CarG, a zinc-associated protein that does not bind DNA. The CarD C-terminal domain resembles eukaryotic high-mobility-group A (HMGA) proteins, and its DNA binding AT hooks specifically recognize the minor groove of appropriately spaced AT-rich tracts. Here, we investigate the determinants of the only known CarD binding site, the one crucial in CarD-CarG regulation of the promoter of the carQRS operon (PQRS), a light-inducible promoter dependent on the extracytoplasmic function (ECF) σ factor CarQ. In vitro, mutating either of the 3-bp AT tracts of this CarD recognition site (TTTCCAGAGCTTT) impaired DNA binding, shifting the AT tracts relative to PQRS had no effect or marginally lowered DNA binding, and replacing the native site by the HMGA1a binding one at the human beta interferon promoter (with longer AT tracts) markedly enhanced DNA binding. In vivo, however, all of these changes deterred PQRS activation in wild-type M. xanthus, as well as in a strain with the CarD-CarG pair replaced by the Anaeromyxobacter dehalogenans CarD-CarG (CarDAd-CarGAd). CarDAd-CarGAd is functionally equivalent to CarD-CarG despite the lower DNA binding affinity in vitro of CarDAd, whose C-terminal domain resembles histone H1 rather than HMGA. We show that CarD physically associates with RNA polymerase (RNAP) specifically via interactions with the RNAP β subunit. Our findings suggest that CarD regulates a light-inducible, ECF σ-dependent promoter by coupling RNAP recruitment and binding to a specific DNA site optimized for affinity and position.  相似文献   

2.
PhyR is a hybrid stress regulator conserved in α‐proteobacteria that contains an N‐terminal σ‐like (SL) domain and a C‐terminal receiver domain. Phosphorylation of the receiver domain is known to promote binding of the SL domain to an anti‐σ factor. PhyR thus functions as an anti‐anti‐σ factor in its phosphorylated state. We present genetic evidence that Caulobacter crescentus PhyR is a phosphorylation‐dependent stress regulator that functions in the same pathway as σT and its anti‐σ factor, NepR. Additionally, we report the X‐ray crystal structure of PhyR at 1.25 Å resolution, which provides insight into the mechanism of anti‐anti‐σ regulation. Direct intramolecular contact between the PhyR receiver and SL domains spans regions σ2 and σ4, likely serving to stabilize the SL domain in a closed conformation. The molecular surface of the receiver domain contacting the SL domain is the structural equivalent of α4‐β5‐α5, which is known to undergo dynamic conformational change upon phosphorylation in a diverse range of receiver proteins. We propose a structural model of PhyR regulation in which receiver phosphorylation destabilizes the intramolecular interaction between SL and receiver domains, thereby permitting regions σ2 and σ4 in the SL domain to open about a flexible connector loop and bind anti‐σ factor.  相似文献   

3.
4.
5.
6.
This special issue of Molecular Microbiology marks the 25th anniversary of the discovery of the extracytoplasmic function (ECF) σ factors, proteins that subsequently emerged as the largest group of alternative σ factors and one of the three major pillars of signal transduction in bacteria, alongside one‐ and two‐component systems. A single bacterial genome can encode > 100 ECF σ factors, and combined with their cognate anti‐σ factors, they represent a modular design that primarily functions in transmembrane signal transduction. Here, we first describe the immediate events that led to the 1994 publication in the Proceeding of the National Academy of Sciences USA, and then set them in the broader context of key events in the history of σ biology research.  相似文献   

7.
8.
9.
10.
11.
12.
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σM, σW and σX all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge‐region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σM to nisin resistance is expression of ltaSa, encoding a stress‐activated lipoteichoic acid synthase, and σX functions primarily by activation of the dlt operon controlling d ‐alanylation of teichoic acids. Together, σM and σX regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σW is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σW contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.  相似文献   

13.
This year marks the 50th anniversary of the discovery of σ70 as a protein factor that was needed for bacterial RNA polymerase to accurately transcribe a promoter in vitro. It was 25 years later that the Group IV alternative σs were described as a distinct family of proteins related to σ70. In the intervening time, there has been an ever‐growing list of Group IV σs, numbers of genes they transcribe, insight into the diverse suite of processes they control, and appreciation for their impact on bacterial lifestyles. This work summarizes knowledge of the Rhodobacter sphaeroides σE‐ChrR pair, a member of the ECF11 subfamily of Group IV alternative σs, in protecting cells from the reactive oxygen species, singlet oxygen. It describes lessons learned from analyzing ChrR, a zinc‐dependent anti‐σ factor, that are generally applicable to Group IV σs and relevant to the response to single oxygen. This MicroReview also illustrates insights into stress responses in this and other bacteria that have been acquired by analyzing or modeling the activity of the σE‐ChrR across the bacterial phylogeny.  相似文献   

14.
15.
The extracellular polymeric substance produced by many human pathogens during biofilm formation often contains extracellular DNA (eDNA). Strands of bacterial eDNA within the biofilm matrix can occur in a lattice‐like network wherein a member of the DNABII family of DNA‐binding proteins is positioned at the vertex of each crossed strand. To date, treatment of all biofilms tested with antibodies directed against one DNABII protein, Integration Host Factor (IHF), results in significant disruption. Here, using non‐typeable Haemophilus influenzae as a model organism, we report that this effect was rapid, IHF‐specific and mediated by binding of transiently dissociated IHF by anti‐IHF even when physically separated from the biofilm by a nucleopore membrane. Further, biofilm disruption fostered killing of resident bacteria by previously ineffective antibiotics. We propose the mechanism of action to be the sequestration of IHF upon dissociation from the biofilm eDNA, forcing an equilibrium shift and ultimately, collapse of the biofilm. Further, antibodies against a peptide positioned at the DNA‐binding tips of IHF were as effective as antibodies directed against the native protein. As incorporating eDNA and associated DNABII proteins is a common strategy for biofilms formed by multiple human pathogens, this novel therapeutic approach is likely to have broad utility.  相似文献   

16.
Much attention has been paid to the signal sequences of eukaryotic protoporphyrinogen oxidases (protoxes); both the organelles targeted by protoxes and the role of protoxes in conferring resistance against protox‐inhibiting herbicides, such as oxyfluorfen, have been examined. However, there have been no reports on the translocation of prokaryotic protoxes. This study investigated the targeting ability of Myxococcus xanthus protox in vitro and in vivo. In an in vitro translocation assay using a dual import system, M. xanthus protein was detected in chloroplasts and mitochondria, suggesting that the M. xanthus protox protein was targeted into both organelles. In order to confirm the in vitro dual targeting ability of M. xanthus, we used a stable transgenic strategy to investigate dual targeting in vivo. In transgenic rice plants overexpressing M. xanthus protox, M. xanthus protox antibody cross‐reacted with proteins with predicted molecular masses of 50 kDa from both chloroplasts and mitochondria, and this in vivo transgene expression corresponded to a prominent increase in chloroplastic and mitochondrial protox activity. Seeds from the transgenic lines M4 and M7 germinated in solid Murashige and Skoog media of up to 500 µm of oxyfluorfen, whereas wild‐type seeds did not germinate in 1 µm . After 4‐week‐old‐rice plants were treated with oxyfluorfen for 3 d, lines M4 and M7 exhibited normal growth, whereas the wild‐type line was severely bleached and necrotized. The herbicidal resistance is attributed to the insignificant accumulation of photodynamic protoporphyrin IX in cytosol because the high chloroplastic and mitochondrial protox activity in oxyfluorfen‐treated transgenic lines, compared with that in oxyfluorfen‐treated and untreated wild‐type plants, metabolizes protoporphyrinogen IX to chlorophyll and heme. A practical application of the dual targeting of M. xanthus protox for obtaining outstanding resistance to peroxidizing herbicides is discussed.  相似文献   

17.
18.
19.
20.
Cells react to their environment through gene regulatory networks. Network integrity requires minimization of undesired crosstalk between their biomolecules. Similar constraints also limit the use of regulators when building synthetic circuits for engineering applications. Here, we mapped the promoter specificities of extracytoplasmic function (ECF) σ s as well as the specificity of their interaction with anti‐ σ s. DNA synthesis was used to build 86 ECF σ s (two from every subgroup), their promoters, and 62 anti‐ σ s identified from the genomes of diverse bacteria. A subset of 20 σ s and promoters were found to be highly orthogonal to each other. This set can be increased by combining the ?35 and ?10 binding domains from different subgroups to build chimeras that target sequences unrepresented in any subgroup. The orthogonal σ s, anti‐ σ s, and promoters were used to build synthetic genetic switches in Escherichia coli. This represents a genome‐scale resource of the properties of ECF σ s and a resource for synthetic biology, where this set of well‐characterized regulatory parts will enable the construction of sophisticated gene expression programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号