首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Petersen  S Lindquist 《Gene》1988,72(1-2):161-168
When heat-shocked Drosophila cells are returned to normal temperatures, heat-shock protein (HSP) synthesis is repressed and normal protein synthesis is restored. The repression of HSP70 synthesis is accompanied by the selective degradation of its mRNA. We have engineered cells to produce a modified hsp70 mRNA that behaves exactly as the wild-type message. That is, it is stable during heat shock but degraded during recovery when protein synthesis returns to normal. When this message, placed under the control of the metallothionein promoter, is induced at normal temperatures it is rapidly degraded, with a half life of 15-30 min. Apparently, the hsp70 message is inherently unstable. During heat-shock, degradation of the message is suspended; during recovery degradation is restored.  相似文献   

2.
The construction and isolation of three recombinant DNAs complementary to different mouse L-cell Mr = 68,000 heat shock protein (hsp68) mRNAs is described. cDNA libraries derived from heat-shocked mouse L-cell poly(A)+ RNA by the vector-linked primer strategy of cDNA synthesis and cloning of Okayama and Berg (Okayama, H., and Berg, P. (1982) Mol. Cell. Biol. 2, 161-170) were screened first with a Drosophila hsp70 heterologous probe and subsequently with a cDNA probe isolated from the first screening. Positive clones were assigned to one of three sets based on their restriction map, and the largest member of each group was chosen for further analysis. All three cDNAs hybrid-select mRNA for the mouse major heat shock protein (hsp68) as assayed by in vitro translation and hybridize preferentially to two heat shock-induced hsp68 mRNAs on Northern blots. The coding regions of the cDNAs are almost identical and closely resemble other HSP70 genes but the 3' untranslated regions diverge considerably. Differences in the lengths of the untranslated regions are responsible for the two different sized induced hsp68 mRNAs in mouse L-cells. The physical maps of these cDNA clones and the limited number of mouse genomic DNA fragments detected on Southern blots suggest that there are at least three closely related heat shock-inducible members of the mouse HSP70 gene family. None of the cloned cDNAs are derived from the two related cognate genes known to be present in the mouse genome.  相似文献   

3.
T J McGarry  S Lindquist 《Cell》1985,42(3):903-911
When Drosophila cells are heat shocked, the translation of normal cellular mRNAs is repressed, while mRNAs encoding the heat-shock proteins are translated at high rates. We have found that the hsp70 message is not translated at high temperatures when its leader sequence is deleted. This message is translated when the cells are allowed to recover at 25 degrees C, but the translation ceases when the cells are given a second heat shock. A message with an extra 39 bases added onto the 5' end of the leader behaves in the same way. However, if either of two conserved sequence elements in the leader is deleted, the message is still translated during heat shock. Although the specific feature responsible for the preferential translation of heat-shock messages is not yet identified, we conclude that it must reside in the 5' untranslated leader.  相似文献   

4.
5.
6.
7.
8.
Aging affects expression of 70-kDa heat shock proteins in Drosophila   总被引:1,自引:0,他引:1  
We examined the effect of cellular aging on adult mortality and hsp70 gene expression in Drosophila melanogaster under thermal stress. The results showed that flies exposed to 37 degrees C for various time intervals had reduced survival rate with age. The level of hsp70 mRNA increases in flies up to 23-28 days of age, but then declines as they get older. When flies are shifted to 25 degrees C after 30 min of heat stress, the time-dependent decrease in hsp70 mRNA levels occurs more rapidly in young flies than in old ones. The hsp70 mRNA present during this recovery period is translated into protein, and senescent flies continue to synthesize this protein for up to 5 h after heat shock. The prolonged expression of hsp70 RNA during recovery from heat shock was also observed in young flies fed canavanine, an arginine analogue. These data suggest that in old insects, the accumulation of conformationally altered proteins plays a role in the regulation of hsp70 RNA expression. These results are discussed in relation to the finding that old flies are more sensitive to thermal stress than young ones.  相似文献   

9.
In contrast to the hsp70 gene, whose expression is normally at a very low level and increases by more than 2 orders of magnitude during heat shock, the hsp83 gene in Drosophila melanogaster is expressed at high levels during normal development and increases only severalfold in response to heat shock. Developmental expression of the hsp83 gene consists of a high level of tissue-general, basal expression and a very high level of expression in ovaries. We identified regions upstream of the hsp83 gene that were required for its developmental and heat shock-induced expression by assaying beta-galactosidase activity and mRNA levels in transgenic animals containing a series of 5' deletion and insertion mutations of an hsp83-lacZ fusion gene. Deletion of sequences upstream of the overlapping array of a previously defined heat shock consensus (HSC) sequence eliminated both forms of developmental expression of the hsp83 gene. As a result, the hsp83 gene with this deletion mutation was regulated like that of the hsp70 gene. Moreover, an in vivo polymer competition assay revealed that the overlapping HSC sequences of the hsp83 gene and the nonoverlapping HSC sequences of the hsp70 gene had similar affinities for the factor required for heat induction of the two heat shock genes. We discuss the functional similarity of hsp70 and hsp83 heat shock regulation in terms of a revised view of the heat shock-regulatory sequence.  相似文献   

10.
Under heat shock conditions translation of Xenopus laevis normal mRNAs in a rabbit reticulocyte cell-free system is blocked whereas hsp70 mRNA is translated. mRNA for E. coli beta-galactosidase containing the last four sense codons of Drosophila hsp70 at its 3'-end was constructed. This mRNA is efficiently translated in a rabbit reticulocyte cell-free system at 43 degrees C.  相似文献   

11.
12.
In the yeast Saccharomyces cerevisiae, the splicing of mRNA precursors is disrupted by a severe heat shock. Mild heat treatments prior to severe heat shock protect splicing from disruption, as was previously reported for Drosophila melanogaster. In contrast to D. melanogaster, protein synthesis during the pretreatment is not required to protect splicing in yeast cells. However, protein synthesis is required for the rapid recovery of splicing once it has been disrupted by a sudden severe heat shock. Mutations in two classes of yeast hsp genes affect the pattern of RNA splicing during the heat shock response. First, certain hsp70 mutants, which overproduce other heat shock proteins at normal temperatures, show constitutive protection of splicing at high temperatures and do not require pretreatment. Second, in hsp104 mutants, the recovery of RNA splicing after a severe heat shock is delayed compared with wild-type cells. These results indicate a greater degree of specialization in the protective functions of hsps than has previously been suspected. Some of the proteins (e.g., members of the hsp70 and hsp82 gene families) help to maintain normal cellular processes at higher temperatures. The particular function of hsp104, at least in splicing, is to facilitate recovery of the process once it has been disrupted.  相似文献   

13.
AU-rich elements (AREs) located in the 3' UTRs of the messenger RNAs (mRNAs) of many mammalian early response genes promote rapid mRNA turnover. HuR, an RRM-containing RNA-binding protein, specifically interacts with AREs, stabilizing these mRNAs. HuR is primarily nucleoplasmic, but shuttles between the nucleus and the cytoplasm via a domain called HNS located between RRM2 and RRM3. We recently showed that HuR interacts with two protein ligands, pp32 and APRIL, which are also shuttling proteins, but rely on NES domains recognized by CRM1 for export. Here we show that heat shock induces increased association of HuR with pp32 and APRIL through protein-protein interactions and that these ligands partially colocalize with HuR in cytoplasmic foci. HuR associations with the hnRNP complex also increase, but through RNA links. CRM1 coimmunoprecipitates with HuR only after heat shock, and nuclear export of HuR becomes sensitive to leptomycin B, an inhibitor of CRM1. Export after heat shock requires the same domains of HuR (HNS and RRM3) that are essential for binding pp32 and APRIL. In situ hybridization and coimmunoprecipitation experiments show that LMB treatment blocks both hsp70 mRNA nuclear export and its cytoplasmic interaction with HuR after heat shock. Together, our results argue that upon heat shock, HuR switches its export pathway to that of its ligands pp32 and APRIL, which involves the nuclear export factor CRM1. HuR and its ligands may be instrumental in the nuclear export of heat-shock mRNAs.  相似文献   

14.
E Hickey  S E Brandon  S Sadis  G Smale  L A Weber 《Gene》1986,43(1-2):147-154
Plasmids containing cDNA copies of mRNAs induced in HeLa cells by heat shock have been isolated and characterized. In vitro translation of RNAs selected by hybridization to plasmid DNAs identified sequences representing the three major classes (89, 70 and 27-kDa) of heat-shock proteins (hsp) and a 60-kDa minor hsp. Plasmids with inserts specific for the 27, 60, and 70-kDa hsp each hybridize with a single discrete size class of heat-inducible mRNA. Plasmids specific for the 89-kDa protein, however, hybridize with either a 2.7- or 2.95-kb mRNA species. Both mRNAs are coordinately induced during heat shock. We show that the characteristic pattern of induction and repression of each class of hsp during sustained hyperthermia is the result of changes in the steady state level of each mRNA.  相似文献   

15.
16.
17.
18.
Heat shock in Drosophila results in repression of most normal (non-heat shock) mRNA translation and the preferential translation of the heat shock mRNAs. The sequence elements that confer preferential translation have been localized to the 5'-untranslated region (5'-UTR) for Hsp22 and Hsp70 mRNAs (in Drosophila). Hsp90 mRNA is unique among the heat shock mRNAs in having extensive secondary structure in its 5'-UTR and being abundantly represented in the non-heat shocked cell. In this study, we show that Hsp90 mRNA translation is inefficient at normal growth temperature, and substantially activated by heat shock. Its preferential translation is not based on an IRES-mediated translation pathway, because overexpression of eIF4E-BP inhibits its translation (and the translation of Hsp70 mRNA). The ability of Hsp90 mRNA to be preferentially translated is conferred by its 5'-UTR, but, in contrast to Hsp22 and -70, is primarily influenced by nucleotides close to the AUG initiation codon. We present a model to account for Hsp90 mRNA translation, incorporating results indicating that heat shock inhibits eIF4F activity, and that Hsp90 mRNA translation is sensitive to eIF4F inactivation.  相似文献   

19.
Two general pathways of mRNA decay have been characterized in yeast. Both start with deadenylation. The major pathway then proceeds via cap hydrolysis and 5'-exonucleolytic degradation whereas the minor pathway consists of 3'-exonucleolytic decay followed by hydrolysis of the remaining cap structure. In higher eukaryotes, these pathways of mRNA decay are believed to be conserved but have not been well characterized. We have investigated the decay of the hsp70 mRNA in Drosophila Schneider cells. As shown by the use of reporter constructs, rapid deadenylation of this mRNA is directed by its 3'-untranslated region. The main deadenylase is the CCR4.NOT complex; the PAN nuclease makes a lesser contribution. Heat shock prevents deadenylation not only of the hsp70 but also of bulk mRNA. A completely deadenylated capped hsp70 mRNA decay intermediate accumulates transiently and is degraded via cap hydrolysis and 5'-decay. Thus, decapping is a slow step in the degradation pathway. Cap hydrolysis is also inhibited during heat shock. Degradation of reporter RNAs from the 3'-end became detectable only upon inhibition of 5'-decay and thus represents a minor decay pathway. Because two reporter RNAs and at least two endogenous mRNAs were degraded primarily from the 5'-end with cap hydrolysis as a slow step, this pathway appears to be of general importance for mRNA decay in Drosophila.  相似文献   

20.
Xenopus oocytes have a complex heat shock response. During transition of the oocyte into fertilized egg, the heat shock response undergoes several qualitative and quantitative changes culminating in its complete extinction. Heat shock induces oocytes to synthesize four heat shock proteins (hsps): 83, 76, 70, and 57. After ovulation, two additional proteins (hsps 22 and 16) are inducible. The heat shock response of spawned eggs can be modified by changing the ionic configuration of the external medium and by adding pyruvate and oxaloacetate to the media. Since Xenopus eggs do not synthesize mRNA, these modifications to the external medium apparently alter the utilization of preexisting messenger RNAs in protein synthesis. Artificial activation terminates inducibility of hsps 76, 57, and 16 and diminishes the hsp 70 response. Two new heat shock proteins-66 and 48-are also inducible in artificially activated eggs. Fertilization, on the other hand, terminates the heat shock response; no hsps can be induced. However, hsp 70 appears to be made constitutively in fertilized eggs. RNA blot analyses reveal that oogenic hsp 70 messenger RNA is retained in eggs and early embryos. This messenger is apparently used for heat-induced synthesis of hsp 70 before fertilization and for constitutive synthesis of hsp 70 in zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号