首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant changes in the intracellular concentrations of adenosine phosphates and nicotinamide adenine dinucleotides were observed during fermentation of grape must by three different strains ofSaccharomyces cerevisiae: S. cerevisiae var.cerevisiae, a typical fermentative yeast strain and two flor-veil-forming strains,S. cerevisiae var.bayanus andS. cerevisiae var.capensis. The intracellular concentration of ATP was always higher inS. cerevisiae var.cerevisiae than in the flor-veil-forming strains. NAD+ and NADP+ concentrations decreased at faster rates in the flor-veil-forming yeasts than in the other yeast but NADH concentration was the same in all yeasts for the first 10 days of fermentation. NADPH concentration was always lower inS. cerevisiae var.cerevisiae than in the other yeasts and this yeast also showed higher rates of growth and fermentation during the early stages of the fermentation and the presence of non-viable cells at the end of fermentation. In contrast, the flor-veil-forming strains maintained growth and fermentation capabilities for a relatively long time and viable cells were present throughout the entire fermentation process (31 days).The authors are with the Department of Microbiology, Faculty of Sciences, University of Cordoba, Avda. San Alberto Magno s/n, 14004-Córdoba, Spain  相似文献   

2.
In Saccharomyces cerevisiae, proline is a stress protectant interacting with other substrate uptake systems against oxidative stress under low pH conditions. In this study, we performed metabolomics analysis to investigate the response associated with an increase in cell growth rates and maximum densities when cells were treated with proline under normal and acid stress conditions. Metabolome data show that concentrations of components of central metabolism are increased in proline-treated S. cerevisiae. No consumption of proline was observed, suggesting that proline does not act as a nutrient but regulates metabolic state and growth of cells. Treatment of lactic acid-producing yeast with proline during lactic acid bio-production improved growth rate and increased the final concentration of lactic acid.  相似文献   

3.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

4.
When cells of Saccharomyces cerevisiae were grown aerobically under glucose-repressed conditions, ethanol production displayed a hyperbolic relationship over a limited range of magnesium concentrations up to around 0.5 mM. A similar relationship existed between available Mg2+ and ethanol yield, but over a narrower range of Mg2+ concentrations. Cellular demand for Mg2+ during fermentation was reflected in the accumulation patterns of Mg2+ by yeast cells from the growth medium. Entry of cells into the stationary growth phase and the time of maximum ethanol and minimum sugar concentration correlated with a period of maximum Mg2+ transport by yeast cells. The timing of Mg2+ transport fluxes by S. cerevisiae is potentially useful when conditioning yeast seed inocula prior to alcohol fermentations. Received 04 March 1996/ Accepted in revised form 21 August 1996  相似文献   

5.
Lactic acid was added to batch very high gravity (VHG) fermentations and to continuous VHG fermentations equilibrated to steady state with Saccharomyces cerevisiae. A 53% reduction in colony-forming units (CFU) ml–1 of S. cerevisiae was observed in continuous fermentation at an undissociated lactic acid concentration of 3.44% w/v; and greater than 99.9% reduction was evident at 5.35% w/v lactic acid. The differences in yeast cell number in these fermentations were not due to pH, since batch fermentations over a pH range of 2.5–5.0 did not lead to changes in growth rate. Similar fermentations performed in batch showed that growth inhibition with added lactic acid was nearly identical. This indicates that the apparent high resistance of S. cerevisiae to lactic acid in continuous VHG fermentations is not a function of culture mode. Although the total amount of ethanol decreased from 48.7 g l–1 to 14.5 g l–1 when 4.74% w/v undissociated lactic acid was added, the specific ethanol productivity increased ca. 3.2-fold (from 7.42×10–7 g to 24.0×10–7 g ethanol CFU–1 h–1), which indicated that lactic acid stress improved the ethanol production of each surviving cell. In multistage continuous fermentations, lactic acid was not responsible for the 83% (CFU ml–1) reduction in viable S. cerevisiae yeasts when Lactobacillus paracasei was introduced to the system at a controlled pH of 6.0. The competition for trace nutrients in those fermentations and not lactic acid produced by L. paracasei likely caused the yeast inhibition.  相似文献   

6.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

7.
Summary The intracellular ATP of baker's yeast (Saccharomyces cerevisiae) was measured using the bioluminescent firefly luciferase assay. Benzalkonium chloride and trichloro-acetic acid served in the experiments as extracting agents and optimal conditions for the extraction and assay of the intracellular ATP are reported. Using the results obtained from manually performed experiments two continuous flow systems were designed for the measurement of ATP in yeast cells during cell growth. Good correlation between the amount of cellular ATP and cell growth was found during the exponential growth phase.  相似文献   

8.
Two separate 4 (bacterial concentrations)×6 (yeast concentrations) full factorial experiments were conducted in an attempt to identify a novel approach to minimize the effects caused by bacterial contamination during industrial production of ethanol from corn. Lactobacillus plantarum and Lactobacillus paracasei, commonly occurring bacterial contaminants in ethanol plants, were used in separate fermentation experiments conducted in duplicate using an industrial strain of Saccharomyces cerevisiae, Allyeast Superstart. Bacterial concentrations were 0, 1×106, 1×107 and 1×108 cells/ml mash. Yeast concentrations were 0, 1×106, 1×107, 2×107, 3×107, and 4×107 cells/ml mash. An increased yeast inoculation rate of 3×107 cells/ml resulted in a greater than 80% decrease (P<0.001) and a greater than 55% decrease (P<0.001) in lactic acid production by L. plantarum and L. paracasei, respectively, when mash was infected with 1×108 lactobacilli/ml. No differences (P>0.25) were observed in the final ethanol concentration produced by yeast at any of the inoculation rates studied, in the absence of lactobacilli. However, when the mash was infected with 1×107 or 1×108 lactobacilli/ml, a reduction of 0.7–0.9% v/v (P<0.005) and a reduction of 0.4–0.6% v/v (P<0.005) in the final ethanol produced was observed in mashes inoculated with 1×106 and 1×107 yeast cells/ml, respectively. At higher yeast inoculation rates of 3×107 or 4×107 cells/ml, no differences (P>0.35) were observed in the final ethanol produced even when the mash was infected with 1×108 lactobacilli/ml. The increase in ethanol corresponded to the reduction in lactic acid production by lactobacilli. This suggests that using an inoculation rate of 3×107 yeast cells/ml reduces the growth and metabolism of contaminating lactic bacteria significantly, which results in reduced lactic acid production and a concomitant increase in ethanol production by yeast.  相似文献   

9.
The effects of different concentrations of the protonophore uncoupler m-carbonyl cyanide 3-hchlorophenylhydrazone (CCCP) on the synthesis of inorganic polyphosphates (polyP) during the first 0.5 h of hypercompensation in the yeast Saccharomyces cerevisiae VKM Y-1173 growing on media with 2% glucose under low (hypoxia) or high aeration or with 1% (vol/vol) ethanol under high aeration were studied. It was shown that the yeast growth on ethanol was completely inhibited by 5 μM CCCP, while growth on glucose was inhibited by 25 μM CCCP, independently of aeration of the medium. The maximum rate of H2 absorption was shown at 2, 5, and 25 μM CCCP for the cells grown on ethanol, on glucose under high aeration, and on glucose under hypoxia, respectively. Against the decrease of total ATP level and total polyP, CCCP had a nonuniform effect on the synthesis of individual polyP fractions. CCCP maximally inhibited synthesis of the most actively formed fractions: polyPI during growth on glucose under hypoxia, polyPIII during growth on glucose under aeration, and polyPIII and polyPV during growth on ethanol. CCCP had no substantial effect on the synthesis of polyPII and polyPIV fractions, the formation of which seems to be less related to the electrochemical potential gradient of H+ ions.  相似文献   

10.
Aims: Adenosine triphosphate (ATP) during the enzymatic production of glutathione is necessary. In this study, our aims were to investigate the reason for low glutathione production in Escherichia coli coupled with an ATP regeneration system and to develop a new strategy to improve the system. Methods and Results: Glutathione can be synthesized by enzymatic methods in the presence of ATP and three precursor amino acids (l ‐glutamic acid, l ‐cysteine and glycine). In this study, glutathione was produced from E. coli JM109 (pBV03) coupled with an ATP regeneration system, by using glycolytic pathway of Saccharomyces cerevisiae WSH2 as ATP regenerator from adenosine and glucose. In the coupled system, adenosine used for ATP regeneration by S. cerevisiae WSH2 was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03). As a consequence, S. cerevisiae WSH2 could not obtain enough adenosine for ATP regeneration in the glycolytic pathway in spite of consuming 400 mmol l?1 glucose within 1 h. By adding adenosine deaminase inhibitor to block the metabolism from adenosine to hypoxanthine, glutathione production (8·92 mmol l?1) enhanced 2·74‐fold in the coupled system. Conclusions: This unusual phenomenon that adenosine was transformed into hypoxanthine irreversibly by E. coli JM109 (pBV03) revealed that less glutathione production in the coupled ATP regeneration system was because of the poor efficiency of ATP generation. Significance and Impact of the Study: The results presented here provide a strategy to improve the efficiency of the coupled ATP regeneration system for enhancing glutathione production. The application potential can be microbial processes where ATP is needed.  相似文献   

11.
During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.  相似文献   

12.
Lactobacillus paracasei was introduced as a contaminant into a multistage continuous culture ethanol fermentation system at ratios of 1:100, 1:1, and 70:1 with Saccharomyces cerevisiae, but failed to overtake the yeast. None of the inoculation ratios allowed L. paracasei to affect S. cerevisiae in the first fermentor in the multistage system. S. cerevisiae remained constant at ∼3×107 CFU/ml regardless of the bacterial inoculation level, and even at the 70:1 inoculation ratio, glucose, ethanol, and lactic acid concentrations did not change from the steady-state concentrations seen before bacterial inoculation. However, L. paracasei decreased steadily from its initial inoculation level of ∼2.2×109 CFU/ml and stabilized at 3.7×105 CFU/ml after 10 days of steady-state operation. Both organisms then persisted in the multistage system at an approximate L. paracasei/S. cerevisiae ratio of 1:100 which confirms that, in continuous fuel ethanol production, it would be difficult to eliminate this bacterium. Only when the pH was controlled at 6.0 in fermentor 1 (F1) were changes seen which would affect the multistage system. Ethanol concentration then decreased by 44% after 4 days of pH-controlled operation. This coincided with an increase in L. paracasei to >1010 CFU/ml, and a 4× increase in lactic acid concentration to 20 g/l. When the clarified contents from other fermentors (F2–F5) in the multistage system were used as growth media, L. paracasei was not able to grow in batch culture. This indicated that the first fermentor in the multistage system was the only fermentor capable of supporting the growth of L. paracasei under the described conditions. Journal of Industrial Microbiology & Biotechnology (2001) 27, 39–45. Received 26 February 2001/ Accepted in revised form 29 May 2001  相似文献   

13.
Efficient ATP generation is required to produce glutathione and NADP. Hence, the generation of ATP was investigated using the glycolytic pathway of yeast. Saccharomyces cerevisiae cells immobilized using polyacrylamide gel generated ATP from adenosine, consuming glucose and converting it to ethanol and carbon dioxide. Under optimal conditions, the ATP-generating activity of immobilized yeast cells was 7.0 μmol h?1 ml?1 gel. A column packed with these immobilized yeast cells was used for continuous ATP generation. The half-life of the column was 19 days at a space velocity of (SV) 0.3 h?1 at 30°C. The properties of glutathione- and NADP-producing reactions coupled with the ATP-generating reaction were investigated. Escherichia coli cells with glutathione synthesizing activity and Brevibacterium ammoniagenes cells with NAD kinase activity were immobilized in a polyacrylamide gel lattice. Under optimal conditions, the immobilized E. coli cells and immobilized B. ammoniagenes cells produced glutathione and NADP at the rates of 2.1 and 0.65 μmol h?1 ml?1 gel, respectively, adding ATP to the reaction mixture. In order to produce glutathione and NADP economically and efficiently, the glutathione- and NADP-producing reactions were finally coupled with the ATP-generating reaction catalysed by immobilized S. cerevisiae cells. To compare the productivities of glutathione and NADP, and to compare the efficiency of ATP utilization for the production of these two compounds, the two reactor systems, co-immobilized cell system and mixed immobilized cell system, were designed. As a result, these two compounds were also found to be produced by these two kinds of reactor systems. Using the data obtained, the feasibility and properties of ATP generation by immobilized yeast cells are discussed in terms of the production of glutathione and NADP.  相似文献   

14.
The comparative analysis of growth, intracellular content of Na+ and K+, and the production of trehalose in the halophilic Debaryomyces hansenii and Saccharomyces cerevisiae were determined under saline stress. The yeast species were studied based on their ability to grow in the absence or presence of 0.6 or 1.0 M NaCl and KCl. D. hansenii strains grew better and accumulated more Na+ than S. cerevisiae under saline stress (0.6 and 1.0 M of NaCl), compared to S. cerevisiae strains under similar conditions. By two methods, we found that D. hansenii showed a higher production of trehalose, compared to S. cerevisiae; S. cerevisiae active dry yeast contained more trehalose than a regular commercial strain (S. cerevisiae La Azteca) under all conditions, except when the cells were grown in the presence of 1.0 M NaCl. In our experiments, it was found that D. hansenii accumulates more glycerol than trehalose under saline stress (2.0 and 3.0 M salts). However, under moderate NaCl stress, the cells accumulated more trehalose than glycerol. We suggest that the elevated production of trehalose in D. hansenii plays a role as reserve carbohydrate, as reported for other microorganisms.  相似文献   

15.
Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h−1 at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population.  相似文献   

16.
Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export.  相似文献   

17.
Aim: To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. Methods and Results: For this study, fermentations were performed in sterilized grape must at 18°C. Inoculum level was 5 × 106 cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml?1. It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Conclusion: Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. Significance and Impact of the Study: This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation.  相似文献   

18.
Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we evaluated several common yeast strains of the Saccharomycetoideae family as a source of high-quality, non-toxic yeastolates with the major aim to find a primary amino acid source for insect and mammalian cell culture that would allow cost-effective uniform stable isotope labelling (13C, 15N). Strains of the facultative methylotrophic yeasts Pichia pastoris and Hansenula polymorpha (Pichia angusta) as well as a strain of the baker’s yeast Saccharomyces cerevisiae were compared as a source of yeastolate with respect to processing, recovery and ability to sustain growth of insect and mammalian cell lines. The best growth-supporting yeastolates were prepared via autolysis from yeast obtained from fed-batch cultures that were terminated at the end of the logarithmic growth phase. Yeastolates obtained from H. polymorpha performed well as a component of insect cell cultures, while yeastolates from S. cerevisiae and H. polymorpha both yielded good results in mammalian cell cultures. Growth of yeasts in Heine’s medium without lactic acid allows relatively low concentrations of 13C and 15N sources, and this medium can be reused several times with supplementation of the 13C source only.  相似文献   

19.
The medium needed to perform a fermentation process with viable cells of Lactobacillus casei ssp. rhamnosus NBIMCC 1013 for the production of lactic acid was modeled and optimized. On the basis of single‐factor experiments and statistical analysis, the significant factors affecting the fermentation process, i.e. the concentration of carbon source, concentrations of both yeast and meat extracts, and the range of variability of these components were determined. Modeling and optimization of the medium contents were performed using central composite design. The composition of the medium used for the production of lactic acid (g/L) was as follows: glucose 69.8, meat extract 17.07, yeast extract 10.9, CH3COONa 10, K2HPO4 0.25, KH2PO4 0.25, MgSO4·7H2O 0.05, and FeSO4 0.05. The maximum specific growth rate of the lactic acid bacteria (μ=0.51 h−1) and other kinetic parameters were determined during cultivation in a laboratory bioreactor using the logistic equation and the Luedeking–Piret model. The obtained medium allows the production of lactic acid under optimum conditions, at high specific sugar assimilation rates and high lactic acid accumulation rates. The positive results of the paper are the new nutrient medium for lactic acid production and the process kinetic model, enabling scaling up and switching to a continuous process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号