首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth, morphology and leaf characteristics were assessed in late spring following simulated autumnal defoliation in second-year saplings of three Chinese subtropical evergreen tree species.Castanopsis fargesii showed strong compensatory growth in terms of plant biomass after removal of both 50 and 75% of leaf biomass and slight compensatory growth after 90% defoliation. DefoliatedC. fargesii saplings had more leaves per unit shoot length than non-defoliated saplings. New leaves on defoliated plants were smaller and had higher per area nitrogen content than new leaves on non-defoliated plants.Pinus massoniana andElaeocarpus japonicus showed strong and no compensatory growth, respectively, after 50% defoliation. The strong compensatory growth inP. massoniana andC. fargesii may partly explain why these species predominate in the early and late successional phases of evergreen broad-leaved forests  相似文献   

2.
Root development in simple and complex tropical successional ecosystems   总被引:8,自引:0,他引:8  
Fine and coarse root mass and fine root surface area were studied during 5 yr following the felling and burning of a tropical forest near Turrialba, Costa Rica. Five experimental ecosystems were established: 1) natural successional vegetation, 2) successional vegetation enriched by seed applications, 3) imitation of succession (built by substituting investigator-selected species for natural colonizers), 4) monocultures (two maize crops followed by cassava andCordia alliodora), and 5) a bare plot. Fine roots grew rapidly in all treatments during the first 15 wk, at which time there were 75 gm−2 in the monoculture and 140 gm−2 in the enriched and natural successions. Subsequent growth was slower, and fine-root mass decreased during the first dry season. After 5 yr coarse root mass to a depth of 85 cm was about 800, 1370, and 1530 gm−2 in the succession, enriched succession and imitation of succession, respectively. At the final harvest, the 3.5 yr-oldC. alliodora plantation had 1000 g m−2 of coarse-root biomass. Roots <1 mm in diameter were concentrated in the upper 5 cm of soil and accounted for most fine-root surface area. Total fine-root surface area was greatest in the enriched successional vegetation and usually lowest in the monoculture.  相似文献   

3.
Abstract Stomatal conductance per unit leaf area in well-irrigated field- and greenhouse-grown sugarcane increased with leaf area up to 0.2 m2 plant 1, then declined so that maximum transpiration per plant tended to saturate rather than increase linearly with further increase in leaf area. Conductance to liquid water transport exhibited parallel changes with plant size. This coordiantion of vapour phase and liquid phase conductances resulted in a balance between water loss and water transport capacity, maintaining leaf water status remarkably constant over a wide range of plant size and growing conditions. The changes in stomatal conductance were not related to plant or leaf age. Partial defoliation caused rapid increases in stomatal conductance, to re-establish the original relationship with remaining leaf area. Similarly, pruning of roots caused rapid reductions in stomatal conductance, which maintained or improved leaf water status. These results suggest that sugarcane stomata adjusted to the ratio of total hydraulic conductance to total transpiring leaf area. This could be mediated by root metabolites in the transpiration stream, whose delivery per unit leaf area would be a function of the relative magnitudes of root system size, transpiration rate and leaf area.  相似文献   

4.
S. L. Gulmon  C. C. Chu 《Oecologia》1981,49(2):207-212
Summary Plants of Diplacus aurantiacus, a successional shrub common in California chaparral, were grown under controlled conditions in which either quantum flux density or nitrogen availability was varied. Photosynthesis and leaf nitrogen content were determined on a leaf area and a leaf weight basis, and whole plant growth was monitored.There was a direct relationship between photosynthesis and leaf nitrogen content on both area and weight bases. Reduced light intensity of the growth environment resulted in reductions in light-saturated photosynthesis and nitrogen content on an area basis, but not on a weight basis. With reduced nitrogen availability, photosynthesis and leaf nitrogen content per unit leaf weight decreased.Resource use efficiency increased as the resource became more limiting. The results are consistent with a model of plant growth in which net carbon gain of the leaf is maximized. Abbreviations. For brevity, the following set of abbreviations is used in presenting and discussing the results. P/area and N/area are, respectively, photosynthesis and leaf nitrogen content per unit leaf area. P/wt and N/wt are the same quantities per unit leaf dry weight. SLW (specific leaf weight) is dry weight per unit leaf area. RGR (relative growth rate) is the relative rate of increase in shoot dry matter per day  相似文献   

5.
Khan  N.A. 《Photosynthetica》2002,40(4):633-634
The effect of 30 % defoliation of shaded leaves in lower layers of plant was studied on activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase (RuBPC), leaf dry mass per unit leaf area, and plant dry mass of mustard (Brassica juncea). Removal of 30 % of leaves resulted in increased CA and RuBPC activities of leaves, and leaf and plant dry masses.  相似文献   

6.
The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta was studied over a 10-month period in two field trials near Lake Victoria in Kenya. One plot was maintained free of mites by means of acaricide, while the other was artificially infested.The highest population density of M. tanajoa occurred during the dry season. A maximum leaf area index (LAI) of about 2 was reached at the onset of the dry season. The total leaf area of mite infested plants was reduced compared with uninfested plants during the dry spell. During the following rainy season infested plants recovered and attained the same leaf area as uninfested plants. A multiple regression model predicting the leaf area showed that 58% of the seasonal variation could be explained by plant age, soil water, and leaf injury.The net growth rate of infested plants was lower than that of uninfested plants. Maximum values of 21 (infested plants) and 49 (uninfested plants) g m-2 week-1 were attained at the onset of the second rainy season. No difference was found between uninfested and infested plants with respect to net assimilation rates per unit leaf area during the dry season. The net assimilation rates reached a maximum almost at the same time as the growth rates, but the infested plants peaked slightly earlier and at a lower level than the uninfested plants. M. tanajoa did not affect the relative allocation of dry matter into stems and storage roots, but the absolute allocation of dry matter declined with increasing mite injury. Thus, after 10 months the dry matter of infested plants was reduced by 29% and 21% for storage roots and stems, respectively, compared with the uninfested plants.  相似文献   

7.
Broad patterns across wild plant species show that leaf composition and morphology vary predictably among habitats, richer habitats favoring resource‐acquisition strategies and poorer habitats favoring resource‐conservation strategies. Domestication is often accompanied by a shift to richer habitats, and might thus be expected to lead to a shift in leaf composition and morphology and hence in photosynthetic parameters. We compared leaf photosynthetic parameters in domesticated cassava (Manihot esculenta) and a close wild relative, using greenhouse‐grown plants. In domesticated cassava, CO2 exchange rate expressed per unit mass and specific leaf area (SLA, m2/kg dry mass) were greater than in the wild relative, whereas leaf dry matter content (LDMC, dry mass/fresh mass) was lower in the domesticate. These results suggest that SLA and net photosynthetic rates may both have increased in the evolution of cassava under domestication, enabling more rapid growth in relatively resource‐rich and protected agricultural habitats. Previous comparisons of photosynthetic rates in domesticated plants and wild relatives have usually considered only leaf area‐based measures. Here, we discuss the interest of using mass‐based rates to study the evolution of ecological strategies under domestication.  相似文献   

8.

Aims

Regrowth of dual-purpose canola after grazing is important for commercial success and the aim of this research was to investigate the effects of defoliation on the development, growth, photosynthesis and allocation of carbohydrates.

Methods

We conducted two pot experiments in which defoliation was conducted at multiple intensities with scissors. Experiment 1 determined changes in flowering date due to defoliation while Experiment 2 investigated the effects of defoliation on growth, photosynthesis and allocation of carbohydrates in canola.

Results

Time to the appearance of the first flower was delayed by up to 9 days after the removal of all leaves at the start of stem elongation (GS30), and up to 19 days if the elongating bud was also removed. Stem growth rate decreased by 56–86 % due to defoliation and tap roots did not increase in mass when plants were completely defoliated. Leaf area continued to expand at the same rate as in un-defoliated plants. The new leaf area established per gram of regrowth biomass over 20 days was 158 cm2.g-1 for the complete defoliation treatments compared with 27 cm2.g?1 for the half-defoliated treatment and 13 cm2.g?1 for the un-defoliated treatment. Despite a reduction in total biomass of up to 60 %, the proportion of dry matter partitioned to the leaves was 18 % for all treatments within 20 days after defoliation. Total non-structural carbohydrate levels were reduced rapidly in the stem by day two (predominately sucrose) and the tap root by day four (predominately starch) after defoliation and did not recover to match un-defoliated plant levels within 20 days. Residual leaves on defoliated plants maintained photosynthetic rate compared with the same leaf cohorts on un-defoliated plants in which photosynthetic rate decreased to 39 % by day 12.

Conclusions

The rapid recovery of leaf area in defoliated canola was facilitated by the sustained high photosynthetic rate in remaining leaves, rapid mobilisation of stored sugars (stem) and starch (root), and a cessation of root and stem growth.  相似文献   

9.
Increasing photosynthetic photon flux density (PPFD) received during development from 5.5 to 31.2 mol m-2 d-1 resulted in greater leaf and mesophyll cell surface areas in cotton (Gossypium hirsutum L.). The relationships between the amounts of these surface areas and potential CO2 assimilation by these leaves were evaluated. Leaf area (epidermal surface area of one side of a leaf), mesophyll cell surface area, and net rate of CO2 uptake (Pn) were measured from the time leaves first unfolded until P., was substantially reduced. At the higher PPFD, leaf and mesophyll surface areas increased more rapidly during expansion, and Pn per unit leaf area was greater than at the lower PPFD. Although leaves at the higher PPFD reached the maximum P., per unit mesophyll cell surface area 4 to 5 days earlier than leaves at the lower PPFD, the maxima for these P., were similar. Leaves grown at the higher PPFD had the potential to assimilate 2.2, 3.5, or 5.8 times the amount of CO2 as leaves from the lower PPFD when P., was expressed per unit mesophyll surface, per unit leaf surface, or per whole leaf, respectively. Greater and earlier development of both P., and mesophyll cell surface area at higher PPFD apparently had a compounding effect on the potential for carbon assimilation by a leaf.  相似文献   

10.
Encelia farinosa is one of the most abundant and highly studied species of the Sonoran Desert, yet characteristics of its leaf development and long-term photosynthetic capacity are relatively unknown. The net CO2 uptake rate and the Rubisco activity per unit leaf area for E. farinosa in a glasshouse increased in parallel for about 18 days after leaf emergence (leaf area was then 5 cm2), after which both were constant, suggesting that Rubisco levels controlled net CO2 uptake. Instantaneous net CO2 uptake rates at noon for well-watered E. farinosa in the glasshouse at different temperatures and light levels correctly predicted differences in daily net CO2 uptake at four seasonally diverse times for transplanted plants under irrigated conditions in the field but overpredicted the daily means by 13%. After this correction, seasonally adjusted net CO2 uptake per unit leaf area multiplied by the estimated monthly leaf area predicted that 42% of the net carbon gain was incorporated into plant dry weight over a 17-month period. The ecological success of E. farinosa apparently reflects an inherently high daily net CO2 uptake and retention of a substantial fraction of its leaf carbon gain.  相似文献   

11.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

12.
Previous field experiments have shown that, for the annual herb Vicia sativa, leaf area lost to herbivory results in reduced number of fruit (pods) produced per plant as well as fewer seeds per pod. We conducted a controlled garden experiment to determine the precise relationship between level of defoliation and various measures of maternal fitness through fruit and seed. We employed manual clipping of individual leaflets of newly produced leaves to 25% increments of damage (from 0% to 100%) over the entire period of development and flowering of these annual herbs, harvesting pods when filled but not dehisced. We found significant reduction in number of pods, number of seeds, total seed mass, and individual seed mass with leaf area lost. Even with the highest levels of defoliation over the life of the individual, plants still produced a substantial number of pods and seeds. Seeds produced by plants in all treatment groups showed similar percentages of germination and time to germination.  相似文献   

13.
Berendse  F.  Lammerts  E. J.  Olff  H. 《Plant Ecology》1998,137(1):71-78
Vegetation and soil development during succession in coastal dune slacks on Terschelling island, the Netherlands, was investigated, by comparing neighbouring ecosystems on similar substrates that had been developing for 1, 5, 35 and 76 years since the vegetation and organic soil layer had been removed. In this successional sequence, soil organic matter accumulated rapidly due to the production of litter and dead roots. N mineralization was extremely low, increasing from 0.2 g m-2 yr-1 after 5 years to 0.8 g m-2 yr-1 after 76 years. It was accompanied by a decline in the pH (KCl) in the upper 10 cm of the soil from 6.8 to 4.4. Most of the above-ground biomass accumulated in the shrub species Oxycoccus macrocarpos and Salix repens. The 5- year-old plots harboured many plant species (18 species per 0.25 m2), but plant species diversity was much lower in the older plots. It is concluded that most changes in species composition and the decline in diversity occurred because early successional plant species were gradually outshaded by the thick litter layer and the accumulated shrub biomass.  相似文献   

14.
For the heavily degraded ecosystem on the Chinese Loess Plateau, it would be of great significance if vegetation restoration could be accelerated anthropogenically. However, one major concern is that if the late successional species were planted or sown in degraded habitats, would they still be competitive in terms of some critical plant traits associated with specific habitats? Water use efficiency (WUE) is a major plant trait shaping the pattern of species turnover in vegetation secondary succession on the Loess Plateau. We hypothesized that if late successional stage plants could still hold a competitive advantage in terms of WUE, the prospects for an acceleration of succession by sowing these species in newly abandoned fields would be good. We tested this hypothesis by comparing the leaf C isotope ratio (δ13C) value (a surrogate of WUE) of dominant species from different successional stages at given soil C and N levels. Results indicated that leaf δ13C of the two dominant species that co-dominated in the second and third stages were significantly more positive than that of the dominant species from the first stage regardless of changing soil C and N. Yet the dominant species from the climax stage is a C4 grass assumed to have the highest WUE. In addition, increasing soil nutrition had no effects on leaf δ13C of two dominant species in the late successional stage, indicating that dominant species from the late successional stages could still have a competitive advantage in terms of WUE in soil C- and N-poor habitats. Therefore, from the perspective of plant WUE, there are great opportunities for ecosystem restoration by sowing both dominant species and other species that co-occur in late successional stages in newly abandoned fields, for the purpose of enhancing species diversity and optimising species composition.  相似文献   

15.
Recôncavo Baiano is an area favourable for the occurrence of citrus greasy spot (CGS) (Mycosphaerella citri), but there has been no study of this pathosystem in Brazil. This work aimed to characterise the temporal patterns of CGS‐induced defoliation in sweet orange cultivars ‘Bahia’ (Washington Navel) and ‘Pêra’. Temperature, rainfall and relative humidity were recorded, as well as weekly defoliation (fallen leaves/canopy m2 or m3). Considering the mean of fallen leaves per canopy m2, and mean canopy area, the total annual defoliation was estimated to be around 32 000 leaves per plant for ‘Bahia’ and 18 500 for ‘Pêra’ sweet orange. Spectral density analysis showed that defoliation has a 5‐week‐long main cycle for both cultivars. The proportion of symptomatic fallen leaves was never below 0.97. The monthly number of fallen leaves per canopy area was positively correlated with the mean CGS incidence on leaves. Defoliation was significant, resulting in a low leaf density throughout the year. Many defoliation cycles and the very high proportion of symptomatic fallen leaves assure a constant inoculum supply. Based on these results, CGS cannot be considered a minor disease, at least in Recôncavo Baiano.  相似文献   

16.
Abstract. We studied canopy structure, shoot architecture and light harvesting efficiencies of the species (photon flux captured per unit above‐ground plant mass) in a series of exclosures of different age (up to 4.5 yr) in originally heavily grazed grassland in N Japan.Vegetation height and Leaf Area Index (LAI) increased in the series and Zoysia japonica, the dominant in the beginning, was replaced by the much taller Miscanthus sinensis. We showed how this displacement in dominance can be explained by inherent constraints on the above‐ground architecture of these two species. In all stands light capture of plants increased with their above‐ground biomass but taller species were not necessarily more efficient in light harvesting. Some subordinate species grew disproportionally large leaf areas and persisted in the shady undergrowth. Some other species first grew taller and managed to stay in the better‐lit parts of the canopy, but ultimately failed to match the height growth of their neighbours in this early successional series. Their light harvesting efficiencies declined and this probably led to their exclusion. By contrast, species that maintained their position high in the canopy managed to persist in the vegetation despite their relatively low light harvesting efficiencies. In the tallest stands ‘later successional’ species had higher light harvesting efficiencies for the same plant height than ‘early successional’ species which was mostly the result of the greater area to mass ratio (specific leaf area, SLA) of their leaves. This shows how plant stature, plasticity in above‐ground biomass partitioning, and architectural constraints determine the ability of plants to efficiently capture light, which helps to explain species replacement in this early successional series.  相似文献   

17.
The contribution of pre-defoliation reserves and current assimilates to leaf and root growth was examined in Lolium perenne L. during regrowth after defoliation. Differential steady-state labelling with 13C (CO2 with δ13C = -0.0281 and -0.0088) and 15N (NO3? with 1.0 and 0.368 atom percentage, i.e. δ15N = 1.742 and 0.0052, respectively) was applied for 2 weeks after defoliation. Rapidly growing tissues were isolated, i.e. the basal elongation and maturation zones of the most rapidly expanding leaves and young root tips, with a biomass turnover rate > 1 d?1. C and N weights of the elongation zone showed a transient decline. The dry matter and C concentration in fresh biomass of leaf growth zones transiently decreased by up to 25% 2 d after defoliation, while the N concentration remained constant. This ‘dilution’ of growth zone C indicates a decreased net influx of carbohydrates relative to growth-related influx of water and N in expanding cells, immediately after defoliation. Recovery of the total C and N weights of the leaf elongation zone coincided with net incorporation of currently absorbed C and N, as shown by the kinetics of δ13C and atom percentage 15N in the growth zones after defoliation. C isotope discrimination (Δ13C) in leaf growth zones was about 23‰, 1–2‰ higher than the Δ in root tips. Δ15N in the leaf and root growth zones was 10±3‰. The leaf elongation zones (at 0–0.03 m from the tiller base) and the distant root tips (about 0.2 m from the base) exhibited similar kinetics of current C and N incorporation. The amount of pre-defoliation C and N in the growth zones, expressed as a fraction of total C and N, decreased from 1.0 to 0.5 at 3 (C) and 5 (N) d after defoliation, and to 0.1 at 5 (C) and 14 (N) d after defoliation. Thus, the dependence of growth zones on current assimilate supply was significant, and stronger for C than for N. The important roles of current assimilates (as compared to pre-defoliation reserves) and ‘dilution’ of dry matter in regrowth after defoliation are discussed in relation to the method of labelling and the functional and morphological heterogeneity of shoot tissues.  相似文献   

18.
黄土塬区不同品种玉米间作群体生长特征的动态变化   总被引:2,自引:0,他引:2  
王小林  张岁岐  王淑庆  王志梁 《生态学报》2012,32(23):7383-7390
不同玉米品种间作,品种间的竞争对群体结构和产量可能有促进作用.为了明确不同密度下品种间作对不同生育期群体生长特征的影响,以及在不同生育期的变化规律,选用郑单958和沈单16两个不同株型的玉米品种在中、高两种密度条件下进行隔行间作田间试验.研究结果表明:不同密度间作群体叶面积指数(Leaf Area Index,LAI)显著增加,同密度不同品种间作LAI在生育后期显著增加,有利于形成合理的冠层结构以获得更多的光照;中等密度下品种间作单株叶面积较单作显著增加,而高密度间作显著降低了单株叶面积;中等密度下,品种间作地上部干物质积累量显著增加,郑单958尤为突出,但高密度间作时的增加幅度较小,这与高密度下株高、茎粗相对减小有关.品种株高、茎粗随间作密度的增加而有所增加,对间作竞争的响应与品种特性密切相关;在不同生育期,郑单958和沈单16号表现不同的生长规律,前者在整个营养生长过程中对间作竞争的响应明显、持续和稳定,而进入生殖期后,间作的生长优势逐渐消失;后者在营养生长期干物质积累量大,但持续时间较短,表现出较弱的竞争性.品种间作可有效改善群体冠层结构,增加群体物质生产力,更好的为增产鉴定基础.  相似文献   

19.
Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration‐based to a more physiologically relevant stomatal flux‐based index, large‐scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole‐tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2 = 0.56) than to stomatal flux per unit leaf area (r2 = 0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle‐leaf species converged when using the mass‐based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large‐scale ozone impact assessment could be greatly improved by considering this well‐known and easily measured leaf trait.  相似文献   

20.
No proportional changes in the photosynthetic rate,P, (measured as the dry weight increments in leaf discs) as related to the specific leaf weight,SLW (i.e. leaf dry weight per unit leaf area) were found because of different variation inP andSLW, respectively, with the age and insertion level of individual sugar beet leaves as well as with the age of the whole plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号