首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate how scale-free (SF) and Erd?s-Rényi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SFout topologies are also more robust to mutations (mutational robustness) than ER networks. Furthermore, the SFout topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.  相似文献   

2.
Response to selection and evolvability of invasive populations   总被引:3,自引:0,他引:3  
Lee CE  Remfert JL  Chang YM 《Genetica》2007,129(2):179-192
While natural selection might in some cases facilitate invasions into novel habitats, few direct measurements of selection response exist for invasive populations. This study examined selection response to changes in salinity using the copepod Eurytemora affinis. This copepod has invaded fresh water from saline habitats multiple times independently throughout the Northern Hemisphere. Selection response to a constant intermediate salinity (5 PSU) was measured in the laboratory for saline source and freshwater invading populations from the St. Lawrence drainage (North America). These populations were reared under three conditions: (1) native salinities (0 or 15 PSU) for at least two generations, (2) 5 PSU for two generations, and (3) 5 PSU for six generations. Full-sib clutches taken from populations reared under these three conditions were split across four salinities (0, 5, 15, and 25 PSU) to determine reaction norms for survival and development time. Contrasts in survival and development time across the three rearing conditions were treated as the selection response. Selection at 5 PSU resulted in a significant decline in freshwater (0 PSU) tolerance for both the saline and freshwater populations. Yet, evolutionary differences in freshwater tolerance persisted between the saline and freshwater populations. The saline and freshwater populations converged in their high-salinity (25 PSU) tolerance, with an increase in the freshwater population and decline in the saline population. Development time did not shift greatly in response to selection at 5 PSU. For all three rearing conditions, the freshwater population exhibited retarded larval development and accelerated juvenile development relative to the saline population. Results from this study indicate that both the saline and freshwater populations exhibit significant responses to selection for a fitness-related trait critical for invasions into a novel habitat. For the Symposium on “Evolvability and Adaptation of Invasive Species,” Society for the Study of Evolution 2004.  相似文献   

3.
Typology now: homology and developmental constraints explain evolvability   总被引:2,自引:0,他引:2  
By linking the concepts of homology and morphological organization to evolvability, this paper attempts to (1) bridge the gap between developmental and phylogenetic approaches to homology and to (2) show that developmental constraints and natural selection are compatible and in fact complementary. I conceive of a homologue as a unit of morphological evolvability, i.e., as a part of an organism that can exhibit heritable phenotypic variation independently of the organism’s other homologues. An account of homology therefore consists in explaining how an organism’s developmental constitution results in different homologues/characters as units that can evolve independently of each other. The explanans of an account of homology is developmental, yet the very explanandum is an evolutionary phenomenon: evolvability in a character-by-character fashion, which manifests itself in phylogenetic patterns as recognized by phylogenetic approaches to homology. While developmental constraints and selection have often been viewed as antagonistic forces, I argue that both are complementary as they concern different parts of the evolutionary process. Developmental constraints, conceived of as the presence of the same set of homologues across phenotypic change, pertain to how heritable variation can be generated in the first place (evolvability), while natural selection operates subsequently on the produced variation.
Ingo BrigandtEmail:
  相似文献   

4.
One interpretation of recent literature on the evolution of phenotypic modularity is that evolution should act to decrease the degree of interaction between genes that contribute to different phenotypes. This issue is addressed directly here using a fitness scheme determined by two genetic loci and a third locus which modifies a measure of statistical interaction between the fitnesses due to the first two. The equilibrium structure of such an epistasis-modifying locus is studied. It is shown that under well-specified conditions a modifying allele that increases epistasis succeeds. In other words, genetic interactions tend to become stronger. It is speculated that this occurs because the mean fitness in such models is locally increasing as a function of the degree of epistasis.  相似文献   

5.
Campagna A  Serrano L  Kiel C 《FEBS letters》2008,582(8):1231-1236
Determining protein interaction networks and generating models to simulate network changes in time and space are crucial for understanding a biological system and for predicting the effect of mutants found in diseases. In this review we discuss the great potential of using structural information together with computational tools towards reaching this goal: the prediction of new protein interactions, the estimation of affinities and kinetic rate constants between protein complexes, and finally the determination of which interactions are compatible with each other and which interactions are exclusive. The latter one will be important to reorganize large scale networks into functional modular networks.  相似文献   

6.
We compared amino acid solvent accessibilities and helix propensities in data sets of Escherichia coli and Bacillus subtilis proteins. These species reside in very different environments and hold very different physiological properties. From the observations, it was proposed that the cytoplasm of B. subtilis is more ion-rich compared to the cytoplasm of E. coli, which might be more hydrophobic; therefore, during evolution these differences have resulted in different protein folding tracks. Such inherent differences imply that the results of bioinformatic analyses of protein structures might depend on the species from which the proteins are picked. It is also suggested that different cytoplasmic environments cause E. coli and B. subtilis to be appropriate for expression of distinct types of proteins.  相似文献   

7.
It has been argued that the architecture of the genotype-phenotype map determines evolvability, but few studies have attempted to quantify these effects. In this article we use the multilinear epistatic model to study the effects of different forms of epistasis on the response to directional selection. We derive an analytical prediction for the change in the additive genetic variance, and use individual-based simulations to understand the dynamics of evolvability and the evolution of genetic architecture. This shows that the major determinant for the evolution of the additive variance, and thus the evolvability, is directional epistasis. Positive directional epistasis leads to an acceleration of evolvability, while negative directional epistasis leads to canalization. In contrast, pure non-directional epistasis has little effect on the response to selection. One consequence of this is that the classical epistatic variance components, which do not distinguish directional and non-directional effects, are useless as predictors of evolutionary dynamics. The build-up of linkage disequilibrium also has negligible effects. We argue that directional epistasis is likely to have major effects on evolutionary dynamics and should be the focus of empirical studies of epistasis.  相似文献   

8.
Robustness and evolvability: a paradox resolved   总被引:3,自引:0,他引:3  
Understanding the relationship between robustness and evolvability is key to understand how living things can withstand mutations, while producing ample variation that leads to evolutionary innovations. Mutational robustness and evolvability, a system's ability to produce heritable variation, harbour a paradoxical tension. On one hand, high robustness implies low production of heritable phenotypic variation. On the other hand, both experimental and computational analyses of neutral networks indicate that robustness enhances evolvability. I here resolve this tension using RNA genotypes and their secondary structure phenotypes as a study system. To resolve the tension, one must distinguish between robustness of a genotype and a phenotype. I confirm that genotype (sequence) robustness and evolvability share an antagonistic relationship. In stark contrast, phenotype (structure) robustness promotes structure evolvability. A consequence is that finite populations of sequences with a robust phenotype can access large amounts of phenotypic variation while spreading through a neutral network. Population-level processes and phenotypes rather than individual sequences are key to understand the relationship between robustness and evolvability. My observations may apply to other genetic systems where many connected genotypes produce the same phenotypes.  相似文献   

9.
Summary The sequences ofSaccharomyces carlsbergensis ribosomal protein (r-protein) SL25* and its equivalents fromCandida utilis (CL25),Escherichia coli (EL23),Bacillus stearothermophilus (BL23),Mycoplasma capricolum (ML23),Marchantia polymorpha chloroplasts (McpL23), andNicotiana tabacum chloroplasts (NcpL23) were examined using a computer program that evaluates the extent of sequence similarity by calculating correlation coefficients for each pair of residues in two proteins from a number of physical properties of individual amino acids. Comparison matrices demonstrate that the prokaryotic sequences (including McpL23 and NcpL23) can be aligned unambiguously by introducing small internal deletions/insertions at three specific positions. A similar comparison brought to light a clear evolutionary relationship between the prokaryotic and the yeast proteins despite the fact that visual inspection of these sequences revealed only limited similarity. The alignment deduced from this comparison shows the two yeast r-proteins to have acquired a long (50–60 amino acids) N-terminal extension as well as a 13-amino acid-long deletion near the C-terminus. The significance of these findings in terms of the evolution of r-proteins in general and the biological function of various parts of the SL25 protein in particular is discussed.  相似文献   

10.
The morphological integration of the hind wings of the western corn rootworm Diabrotica virgifera virgifera LeConte was investigated to get a better insight of the undergone by this invasive species. Geometric morphometric methods were used to test two modularity hypotheses associated with the wing development and function (hypothesis H1: anterior/posterior or H2: distal/proximal wing parts). Both hypotheses were rejected and the results showed the integrated behavior of the hind wings of D. v. virgifera. The hypothesized modules do not represent separate units of variation, so in a similar fashion as exhibited by the model species Drosophila melanogaster, the hind wings of D. v. virgifera act as a single functional unit. The moderate covariation strength found between anterior and posterior and distal and proximal parts of the hind wing of D. v. virgifera confirms its integrated behavior. We conclude that the wing shape shows internal integration, which could enable flexibility and thus enhance flight maneuverability. This study contributes to the understanding of morphological integration and modularity on a non-model organism. Additionally, these findings lay the groundwork for future flight performance and biogeographical studies on how wing shape and size vary across the endemic and expanded/invaded range in the USA and Europe infested with D. v. virgifera.  相似文献   

11.
Geuten K  Viaene T  Irish VF 《Annals of botany》2011,107(9):1545-1556

Background

Gene duplication has often been invoked as a key mechanism responsible for evolution of new morphologies. The floral homeotic B-group gene family has undergone a number of gene duplication events, and yet the functions of these genes appear to be largely conserved. However, detailed comparative analysis has indicated that such duplicate genes have considerable cryptic variability in their functions. In the Solanaceae, two duplicate B-group gene lineages have been retained in three subfamilies. Comparisons of orthologous genes across members of the Solanaceae have demonstrated that the combined function of all four B-gene members is to establish petal and stamen identity, but that this function was partitioned differently in each species. These observations emphasize both the robustness and the evolvability of the B-system.

Scope

We provide an overview of how the B-function genes can robustly specify petal and stamen identity and at the same time evolve through changes in protein–protein interaction, gene expression patterns, copy number variation or alterations in the downstream genes they control. By using mathematical models we explore regulatory differences between species and how these impose constraints on downstream gene regulation.

Conclusions

Evolvability of the B-genes can be understood through the multiple ways in which the B-system can be robust. Quantitative approaches should allow for the incorporation of more biological realism in the representations of these regulatory systems and this should contribute to understanding the constraints under which different B-systems can function and evolve. This, in turn, can provide a better understanding of the ways in which B-genes have contributed to flower diversity.  相似文献   

12.
Sequence similarity is the most common measure currently used to infer homology between proteins. Typically, homologous protein domains show sequence similarity over their entire lengths. Here we identify Asp box motifs, initially found as repeats in sialidases and neuraminidases, in new structural and sequence contexts. These motifs represent significantly similar sequences, localized to beta hairpins within proteins that are otherwise different in sequence and three-dimensional structure. By performing a combined sequence- and structure-based analysis we detect Asp boxes in more than nine protein families, including bacterial ribonucleases, sulfite oxidases, reelin, netrins, some lipoprotein receptors, and a variety of glycosyl hydrolases. Although the function common to each of these proteins, if any, remains unclear, we discuss possible functions of Asp boxes on the basis of previously determined experimental results and discuss different evolutionary scenarios for the origin of Asp-box containing proteins.  相似文献   

13.
Empirical data sets of Artiodactyla (Antilocapridae, Bovidae, Cervidae, Suidae), Carnivora (Mustelidae) and Rodentia (Sciuridae, Cricetidae, Arvicolidae, Muridae), obtained by horizontal starch el electrophoresis of 15–34 isoenzyme sstems, were used to calculate genetic distances and to construct phylogenetic trees by the following methods: Nei's D (corrected for small sample sizes) - UPGMA, FITCH, KITSCH (out of Felsenstein's PHYLIP-package); Rogers -distance - distance-Wanger tree; maximum likelihood approach (cavalli -Sforza -Edwards ); maximum parsimony method (wagner ); Hennigian cladogram. The results were re-examined using the statisticar methods of jackknife and bootstrap. The following problems became apparent and were studied in more detail: inconstancy of molecular evolutionary rate among taxa, non-uniformity of evolutionary rate among isoenzymes, possible convergence of alloenzymes, different evolutionary histories of taxa (radiations/bottlenecks), methodological influences sample sizes / rare alleles, comparability of data sets). The results show, that many branches of the various phylogenetic trees are fairly constant. The ambiguous position of the remaining OTU's is due to insufficient evidence in the primary data rather than to theroperties of cluster algorithms. However, since these problematic cases are also uncertain in phylogenies based on morphological characters and palaeontological results, even an increased data set may not lead to a cyear decision unless additional taxa of crucial importance are examined. Molecular evolutionary rate among taxa seems to be accelerated in some cases, possibly due to random fixation of different alleles during bottlenecks, when a highly polymorpic ancestral form underwent a series of adaptive radiations. Isoenzymes can be divided into groups with different evolutionary rates. Thus, data sets are only comparable with respect to genetic variability and differentiation, when they contain a similar amount of representatives of each of these categories.  相似文献   

14.
The large genome constraint hypothesis: evolution, ecology and phenotype   总被引:7,自引:0,他引:7  
BACKGROUND AND AIMS: If large genomes are truly saturated with unnecessary 'junk' DNA, it would seem natural that there would be costs associated ith accumulation and replication of this excess DNA. Here we examine the available evidence to support this hypothesis, which we term the 'large genome constraint'. We examine the large genome constraint at three scales: evolution, ecology, and the plant phenotype. SCOPE: In evolution, we tested the hypothesis that plant lineages with large genomes are diversifying more slowly. We found that genera with large genomes are less likely to be highly specious -- suggesting a large genome constraint on speciation. In ecology, we found that species with large genomes are under-represented in extreme environments -- again suggesting a large genome constraint for the distribution and abundance of species. Ultimately, if these ecological and evolutionary constraints are real, the genome size effect must be expressed in the phenotype and confer selective disadvantages. Therefore, in phenotype, we review data on the physiological correlates of genome size, and present new analyses involving maximum photosynthetic rate and specific leaf area. Most notably, we found that species with large genomes have reduced maximum photosynthetic rates - again suggesting a large genome constraint on plant performance. Finally, we discuss whether these phenotypic correlations may help explain why species with large genomes are trimmed from the evolutionary tree and have restricted ecological distributions. CONCLUSION: Our review tentatively supports the large genome constraint hypothesis.  相似文献   

15.
16.
High-resolution two dimensional gel electrophoresis has been used to study the patterns of protein synthesis in imaginal discs of Drosophila melanogaster. In this paper we first compare the patterns of protein synthesis in wing, haltere, leg 1, leg 2, leg 3 and eye antenna imaginal discs of late third instar larvae. We have detected only quantitative changes: differences in 17 proteins among the different imaginal discs. In addition, we have analysed the variations in pattern of proteins in the wing disc of the last larval stage and early pupae as well as in wing discs cultured in vivo for 6 days. Variations in these patterns affect more than 20% of the proteins and involve both qualitative and quantitative changes. Some of the changes may correspond to protein phosphorylation. Correlations of these changes between discs and through development are also discussed. Correspondence to: F. Santaren  相似文献   

17.
Alpha-kinases are a recently discovered family of protein kinases that have no detectable sequence homology to conventional protein kinases (CPKs). They include elongation factor 2 kinase, Dictyostelium myosin heavy chain kinases and many other protein kinases from diverse organisms, as revealed by various genome sequencing projects. Mammals have six alpha-kinases, including two channel-kinases-novel signaling molecules that contain an alpha-kinase domain fused to an ion-channel. Analysis of all known alpha-kinase sequences reveals the presence of several highly conserved motifs. Despite the fact that alpha-kinases have no detectable sequence identity with CPKs, the recently determined three-dimensional structure of the channel-kinase TRPM7/ChaK1 kinase domain reveals that alpha-kinases have a fold very similar to CPKs. Using the structural alignment of channel-kinase TRPM7/ChaK1 with cyclic-AMP dependent kinase, the consensus motifs of alpha-kinases and CPKs were aligned and compared. Remarkably, the majority of structural elements, sequence motifs, and the position of key amino acid residues important for catalysis appear to be very similar in alpha-kinases and CPKs. Differences between alpha-kinases and CPKs, and their possible impact on substrate recognition are discussed.  相似文献   

18.
Here we report a thorough analysis of cross-predictions between coiled-coil and disordered protein segments using various prediction algorithms for both sequence classes. Coiled-coils are often predicted to be unstructured, consistent with their obligate multimeric nature, whereas reverse cross-predictions are rare due to the regularity of coiled-coil sequences. We propose the simultaneous use of the programs Coils and IUPred to achieve acceptable prediction accuracy and minimize the extent of cross-predictions. The relevance of observed cross-predictions might be that disordered sequences can adopt coiled-coil conformation relatively easily during protein evolution.  相似文献   

19.
The potential and direction of phenotypic evolution is constrained by the distribution of genetic variation for the traits as described by the phenotypic (P) and genetic covariance matrices (G). The rank of the covariance matrix reflects the number of independent variational dimensions of the phenotype. Covariance matrices with less than full rank indicate lack of variation in some directions of the phenotype space and thus are an indication of absolute evolutionary constraints. Because selection acts upon phenotypic variation, the rank of P represents the upper limit of the dimensionality in G, relevant for selection response. The limitations of current methods to estimate matrix rank motivated us to analyze and adjust a bootstrap method and evaluate its performance by simulation. The results show that the modified bootstrap method (ABRE) gives reliable and rather conservative rank estimates when the sample size is sufficient for the number of variables studied (the sample size is at least five-fold the number of variables). Applying the method to various datasets suggests high phenotypic dimensionality in all cases. The analysis thus provides no evidence for absolute evolutionary constraints. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A simple model of co-evolutionary dynamics caused by epistatic selection   总被引:1,自引:0,他引:1  
Epistasis is the dependency of the effect of a mutation on the genetic background in which it occurs. Epistasis has been widely documented and implicated in the evolution of species barriers and the evolution of genetic architecture. Here we propose a simple model to formalize the idea that epistasis can also lead to co-evolutionary patterns in molecular evolution of interacting genes. This model epistasis is represented by the influence of one gene substitution on the fitness rank of the resident allele at another locus. We assume that increasing or decreasing fitness rank occur equally likely. In simulations we show that this form of epistasis leads to co-evolution in the sense that the length of an adaptive walk between interacting loci is highly correlated. This effect is caused by episodes of elevated rate of evolution in both loci simultaneously. We find that the influence of epistasis on these measures of co-evolutionary dynamics is relatively robust to the details of the model. The main factor influencing the correlation in evolutionary rates is the probability that a substitution will have an epistatic effect, but the strength of epistasis or the asymmetry of the initial fitness ranks of the alleles have only a minor effect. We suggest that covariance in rates of evolution among loci could be used to detect epistasis among loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号