首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Severe side effects and complications such as gastrointestinal and hematological toxicities because of current anticancer drugs are major problems in the clinical management of gastric cancer, which highlights the urgent need for novel effective and less toxic therapeutic approaches. Hispolon, an active polyphenol compound, is known to possess potent antineoplastic and antiviral properties. In this study, we investigated the efficacy of hispolon in human gastric cancer cells and explored the cell death mechanism. Hispolon induced ROS-mediated apoptosis in gastric cancer cells and was more toxic toward gastric cancer cells than toward normal gastric cells, suggesting greater susceptibility of the malignant cells. The mechanism of hispolon-induced apoptosis was that hispolon abrogated the glutathione antioxidant system and caused massive ROS accumulation in gastric cancer cells. Excessive ROS caused oxidative damage to the mitochondrial membranes and impaired the membrane integrity, leading to cytochrome c release, caspase activation, and apoptosis. Furthermore, hispolon potentiated the cytotoxicity of chemotherapeutic agents used in the clinical management of gastric cancer. These results suggest that hispolon could be useful for the treatment of gastric cancer either as a single agent or in combination with other anticancer agents.  相似文献   

2.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

3.
As the most common selenium derivative, methylseleninic acid (MSA) has attracted wide attention. Its apoptotic induction ability and the possible molecular mechanism in human bladder cancer (BC) J82 and T24 cells were investigated in the present study. We found that the survival of J82 and T24 cells were inhibited in a dose-dependent manner after MSA treatment. Propidium iodide (PI) staining and Annexin V-fluorescein isothiocyanate/PI double staining clarified that MSA stocked cells at G2/M phase and caused apoptosis in J82 and T24 cells. Further, typical morphological features of apoptotic cells were also observed. Accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential were also detected by dichlorodihydrofluorescein diacetate and Rhodamin123 staining. Meanwhile, pretreatment with N-acetylcysteine, an ROS scavenging agent, found that the apoptosis of BC cells induced by MSA was related to the production of ROS. Western blot analysis results showed that MSA interrupted Bax/Bcl-2 balance, stimulated cytochrome c release into the cytoplasm, activated caspase-9 and caspase-3, and finally induced the apoptosis of the BC cells. These findings demonstrated that MSA was able to induce apoptosis in J82 and T24 cells through ROS-mediated mitochondrial apoptosis.  相似文献   

4.
Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-l-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.  相似文献   

5.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

6.
In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.  相似文献   

7.
Cajanol (5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxychroman-4-one) is an isoflavanone from Pigeonpea [Cajanus cajan (L.) Millsp.] roots. As the most effective phytoalexin in pigeonpea, the cytotoxic activity of cajanol towards cancer cells has not been report as yet. In the present study, the anticancer activity of cajanol towards MCF-7 human breast cancer cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of cajanol, cell cycle distribution, DNA fragmentation assay and morphological assessment of nuclear change, ROS generation, mitochondrial membrane potential (ΔΨm) disruption, and expression of caspase-3 and caspase-9, Bax, Bcl-2, PARP and cytochrome c were measured in MCF-7 cells. Cajanol inhibited the growth of MCF-7 cells in a time and dose-dependent manner. The IC50 value was 54.05 μM after 72 h treatment, 58.32 μM after 48 h; and 83.42 μM after 24 h. Cajanol arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of cajanol towards cancer cells in vitro.  相似文献   

8.
《Phytomedicine》2014,21(12):1658-1665
Polygonatum odoratum lectin (POL), a mannose-binding GNA-related lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which POL induces cancer cell death are still elusive. In the current study, we found that POL could induce both apoptosis and autophagy in human MCF-7 breast cancer cells. Subsequently, we found that POL induced MCF-7 cell apoptosis via the mitochondrial pathway. Additionally, we also found that POL induces MCF-7 cell apoptosis via EGFR-mediated Ras-Raf-MEK-ERK pathway, suggesting that POL may be a potential EGFR inhibitor. Finally, we used proteomics analyses for exploring more possible POL-induced pathways with EGFR, Ras, Raf, MEK and ERK, some of which were consistent with our in silico network prediction. Taken together, these results demonstrate that POL induces MCF-7 cell apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK signaling pathway, which would provide a new clue for exploiting POL as a potential anti-neoplastic drug for future cancer therapy.  相似文献   

9.
《Free radical research》2013,47(1):90-100
Abstract

The pharmacological activity of polyphenolic silibinin from milk thistle (Silybum marianum) is primarily due to its antioxidant property. However, this study found that silibinin promoted sustained superoxide (O2·–) production that was specifically scavenged by exogenous superoxide dismutase (SOD) in MCF-7 cells, while the activity of endogenous SOD was not changed by silibinin. Previous work proved that silibinin induced MCF-7 cell apoptosis through mitochondrial pathway and this study further proved that O2·– generation induced by silibinin was also related to mitochondria. It was found that respiratory chain complexes I, II and III were all involved in silibinin-induced O2·– generation. Moreover, it was found that silibinin-induced O2·– had protective effect, as exogenous SOD markedly enhanced silibinin-induced apoptosis.  相似文献   

10.
Polyphenols represent a large class of plant-derived molecules with a general chemical structure that act as potent free radical scavengers. They have long been recognized to possess several therapeutic activities ranging from anti-thrombotic to antioxidant. Moreover, the capability of polyphenols to act as reducing or oxidizing molecules depends on the presence of environmental metals and on the concentrations used. In this work we demonstrated that the stilbene trans-resveratrol was able to commit human breast cancer MCF-7 cells to apoptosis. Mainly, we evidenced a pivotal role of the mitochondria in this phenomenon as cytochrome c release into the cytosol was found after the treatment. We further showed that trans-resveratrol was able to affect cellular redox state. In particular, it induced an early production of ROS and lipid oxidation, and only later compromised the GSH/GSSG ratio. This mode of action was mirrored by a temporally different activation of JNK and p38(MAPK), with the former rapidly induced and the latter weakly activated at long intervals. The results obtained demonstrate a pro-apoptotic activity for trans-resveratrol, and suggest a preferential activation of different classes of MAP kinases in response to different oxidative stimuli (ROS versus GSH/GSSG alteration).  相似文献   

11.
Connective tissue growth factor (CTGF) is a member of an emerging CCN gene family that is implicated in various diseases associated with fibro-proliferative disorder including scleroderma and atherosclerosis. The function of CTGF in human cancer is largely unknown. We now show that CTGF induces apoptosis in the human breast cancer cell line MCF-7. CTGF mRNA was completely absent in MCF-7 but strongly induced by treatment with transforming growth factor beta (TGF-beta). TGF-beta by itself induced apoptosis in MCF-7, and this effect was reversed by co-treatment with CTGF antisense oligonucleotide. Overexpression of CTGF gene in transiently transfected MCF-7 cells significantly augmented apoptosis. Moreover, recombinant CTGF protein significantly enhanced apoptosis in MCF-7 cells as evaluated by DNA fragmentation, Tdt-mediated dUTP biotin nick end-labeling staining, flow cytometry analysis, and nuclear staining using Hoechst 33258. Finally, recombinant CTGF showed no effect on Bax protein expression but significantly reduced Bcl2 protein expression. Taken together, these results suggest that CTGF is a major inducer of apoptosis in the human breast cancer cell line MCF-7 and that TGF-beta-induced apoptosis in MCF-7 cells is mediated, in part, by CTGF.  相似文献   

12.
13.
14.
Singh M  Sharma H  Singh N 《Mitochondrion》2007,7(6):367-373
Cervical cancer is the most common cancer amongst females in India and is associated with high risk HPVs, reactive oxygen species (ROS), and excessive inflammation in most cases. ROS in turn affects the expression of pro- and anti-apoptotic proteins. The objective of the present study was to elucidate the effect of hydrogen peroxide (H(2)O(2)) on apoptotic signaling molecules in vitro. HeLa cell line expresses the Human papilloma virus - 18, E6 oncoprotein which causes the ubiquitin mediated degradation of p53 protein and is thus p53 deficient. p53 is known to act as a cellular stress sensor and triggers apoptosis. p73, a member of the p53 family also induces apoptosis in response to DNA damaging agents but unlike p53, it is infrequently mutated in human tumors. We demonstrate here, that in HeLa cells, apoptosis is triggered by H(2)O(2) via the mitochondrial pathway involving upregulation of p73, and its downstream target Bax. This was accompanied by upregulation of ERK, JNK, c-Myc, Hsp-70 and down regulation of anti-apoptotic Bcl-XL, release of cytochrome c from mitochondria and activation of caspases-9 and -3.  相似文献   

15.
alpha-Tocopheryl succinate (alpha-TS) is a potent inhibitor of tumor cell proliferation. The goal of the present study was to investigate whether and to what extent alpha-TS associates with plasma lipoproteins and if alpha-TS-enriched lipoproteins inhibit breast cancer cell growth in a manner comparable to the free drug. In vitro enrichment of human plasma revealed that alpha-TS readily associated with the main lipoprotein classes, findings confirmed in vivo in mice. At the highest alpha-TS concentrations, lipoproteins carrying 50000 (VLDL), 5000 (LDL) and 700 (HDL) alpha-TS molecules per lipoprotein particle were generated. alpha-TS enrichment generated lipoprotein particles with slightly decreased density and increased particle radius. To study whether the level of LDL-receptor (LDL-R) expression affects alpha-TS uptake from apoB/E containing lipoprotein particles human breast cancer cells with low (MCF-7) and normal (HBL-100) LDL-R expression were used. The uptake of free, VLDL- and (apoE-free) HDL(3)-associated alpha-TS was nearly identical for both cell lines. In contrast, uptake of LDL-associated alpha-TS by HBL-100 cells (normal LDL-R expression) was about twice as high as compared to MCF-7 cells (low LDL-R expression). VLDL and LDL-associated alpha-TS inhibited proliferation most effectively at the highest concentration of alpha-TS used (100% inhibition of MCF-7 growth with 20 microg/ml of lipoprotein-associated alpha-TS). However, also alpha-TS-free VLDL and LDL inhibited HBL-100 cell proliferation up to 55%. In both cell lines, alpha-TS-enriched HDL(3) inhibited cell growth by 40-60%. Incubation of both cell lines in the presence of free or lipoprotein-associated alpha-TS resulted in DNA fragmentation indicative of apoptosis. Collectively, the present findings demonstrate that: (1) alpha-TS readily associates with lipoproteins in vitro and in vivo; (2) the lipoprotein-enrichment efficacy was dependent on the particle size and/or the triglyceride content of the lipoprotein; (3) uptake of LDL-associated alpha-TS was apparently dependent on the level of LDL-R expression; and (4) lipoproteins were efficient alpha-TS carriers inducing reduced cell proliferation rates and apoptosis in human breast cancer cells as observed for the free drug.  相似文献   

16.
17.
18.
19.
《Free radical research》2013,47(5):577-584
Abstract

Increasing research has concentrated on the anti-tumour efficacy of silibinin, a flavonolignan that is clinically used as an hepatoprotectant. However, previous work has found that silibinin-induced apoptosis is accompanied by protective superoxide (O2??) generation in MCF-7 cells. This study further reports the formation of reactive nitrogen species (RNS) in the same system. It finds that silibinin induces nitric oxide (?NO) generation in a time- and concentration-dependent manner. Moreover, the results support that there exists an inter-regulation pattern between RNS and reactive oxygen species (ROS) generation. In addition, silibinin is also found to induce RNS and ROS generation in the isolated populations of mouse peripheral blood mononuclear cells (PBMCs) and a simple in vivo model of Caenorhabditis elegans.  相似文献   

20.

Background

Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells.

Results

The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage.

Conclusion

The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号