首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eastern Asia (EA) is a key region for the diversification of flowering plants in the Northern Hemisphere, but few studies have focused on the biogeographic history within EA in the context of the other northern continents. Polygonatum is an important medicinal genus widely distributed in the Northern Hemisphere with its highest species richness in EA, and it represents an excellent model for studying the evolution of biogeographic patterns in this region. Divergence time estimation was used to examine the biogeographic history of Polygonatum based on nuclear ITS and four plastid sequences (rbcL, matK, psbA–trnH and trnC–petN) from 30 Polygonatum species and 35 outgroup taxa. The ancestral area of Polygonatum and subsequent dispersal routes were inferred using Bayes-Lagrange. Polygonatum was estimated to have originated in southern EA during the middle Miocene (14.34–13.57 Ma) with subsequent south-to-north expansion in the late Miocene. Multiple intercontinental dispersal events were inferred between EA and Europe or North America, and all of them have occurred recently in the late Miocene to Pliocene. The separation of Polygonatum into the south and north lineages and their subsequent diversifications in the late Miocene supports the existence of a biogeographic divide between the northern and southern parts of EA that also coincides with the retreat and redevelopment of the arid zone in EA in the Neogene. Our results demonstrate the complexity of biogeographic history of Polygonatum in the Northern Hemisphere including early vicariance followed by frequent and recent dispersals in the Neogene.  相似文献   

3.
The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled biogeographers for more than a century. This biogeographic pattern has been hypothesized to be the result of transoceanic long‐distance dispersal, Oligocene dispersal through forested corridors, Miocene dispersal through the Arabian Peninsula or passive dispersal on the rifting Indian plate. However, it has often been difficult to pinpoint the mechanisms at play. We investigate biotic exchange between the Afrotropics and the Oriental region during the Cenozoic, a period in which geological changes altered landmass connectivity. We use Baorini skippers (Lepidoptera, Hesperiidae) as a model, a widespread clade of butterflies in the Old World tropics with a disjunct distribution between the Afrotropics and the Oriental region. We use anchored phylogenomics to infer a robust evolutionary tree for Baorini skippers and estimate divergence times and ancestral ranges to test biogeographic hypotheses. Our phylogenomic tree recovers strongly supported relationships for Baorini skippers and clarifies the systematics of the tribe. Dating analyses suggest that these butterflies originated in the Oriental region, Greater Sunda Islands, and the Philippines in the early Miocene c. 23 Ma. Baorini skippers dispersed from the Oriental region towards Africa at least five times in the past 20 Ma. These butterflies colonized the Afrotropics primarily through trans‐Arabian geodispersal after the closure of the Tethyan seaway in the mid‐Miocene. Range expansion from the Oriental region towards the African continent probably occurred via the Gomphotherium land bridge through the Arabian Peninsula. Alternative scenarios invoking long‐distance dispersal and vicariance are not supported. The Miocene climate change and biome shift from forested areas to grasslands possibly facilitated geodispersal in this clade of butterflies.  相似文献   

4.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

5.
We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.  相似文献   

6.
We reconstruct here the spatial and temporal evolution of the Campanula alliance in order to better understand its evolutionary history. To increase phylogenetic resolution among major groups (Wahlenbergieae–Campanuleae), new sequences from the rbcL region were added to the trnL-F dataset obtained in a previous study. These phylogenies were used to infer ancestral areas and divergence times in Campanula and related genera using a Bayesian approach to molecular dating and dispersal–vicariance analyses that takes into account phylogenetic uncertainty. The new phylogenetic analysis confirms Platycodoneae as the sister group of Wahlenbergieae–Campanuleae, the two last ones inter-graded into a well-supported clade. Biogeographic and dating analyses suggest that Western Asia and the Eastern Mediterranean have played a major role as centers of migration and diversification within the Campanula alliance, probably in relation to the intense orogenic activity that took place in this region during the Late Neogene, and that could have promoted isolation and allopatric speciation within lineages. Diversification rates within several Campanula lineages would have increased at the end of the Miocene, coinciding with the Messinian Stage. Strong selective pressures from climate changes and the expansion of mountainous regions during this period are suggested to explain the adaptation to drought, cold or disturbed environments observed in many Campanula species. Several independent long-distance dispersal events to North America are inferred within the Rapunculus clade, which seem to be related to high ploidy levels.  相似文献   

7.
We conducted a biogeographic analysis of the PPAM clade of Poeae Plastid DNA Group 2, which includes 12 subtribes of C3 grasses. One hundred and eighty-four species sampled represent 42 of 43 accepted genera and taxonomic diversity in large genera. We analyzed plastid sequences of matK, trnC-rpoB, and trnT-trnL-trnF using BEAST to produce a dated tree and MrBayes to produce a Bayesian tree, on which we ran Bayesian-Binary-Markov-Chain analyses on a worldwide biogeographic data set of 12 areas. PPAM split in southwestern Asia into subtribe Coleanthinae and PAM clades in the Early Miocene. PAM diversified rapidly in the Middle Miocene in southwestern Asia into four monogeneric lineages, Avenulinae, Phleinae, Miliinae, Poinae, and the Alopecurinae superclade (seven subtribes with 27 genera). In the Late Miocene, Pliocene, and mostly Pleistocene, the latter four lineages diversified and dispersed across Eurasia and established in North America. Dispersals to the southern hemisphere occurred in the Pliocene and Pleistocene. Annuals occur in 15 Mediterranean and southwestern Asia genera, but in few genera in other regions. Beyond phylogenetically isolated annual species dating to the Miocene, all other annuals evolved in the Pliocene and Pleistocene. Cold tolerance is high among perennial species, many occurring in the alpine, nine genera ranging into the Arctic. We suggest that alpine and subalpine habitats were ancestral. High tolerance of saline and alkaline conditions arose between the Pliocene and Pleistocene in Coleanthinae, Alopecurinae, Poinae, Hookerochloinae, Beckmanniinae, and Arctopoa. Combinations are proposed for Cornucopiae alopecuroides in Alopecurus and for Paracolpodium colchicum in Hyalopodium. A nothogenus × Catanellia is proposed for Catabrosa × Puccinellia.  相似文献   

8.

Background

Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma).

Methodology/Principal Findings

We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnLUAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece.

Conclusions/Significance

The current distribution of Linaria sect. Versicolores lineages is explained by both ancient isolation between African and European populations and recent events of long-distance dispersal over sea barriers. This result provides new evidence for the biogeographic complexity of the Mediterranean region.  相似文献   

9.
Most examples of intercontinental dispersal events after the Miocene contact between Africa and Asia involve mammal lineages. Among amphibians, a number of probably related groups are known from both continents, but their phylogenies are so far largely unresolved. To test the hypothesis of Miocene dispersal against a Mesozoic vicariance scenario in the context of Gondwana fragmentation, we analyzed fragments of the mitochondrial 16S rRNA gene (572 bp) in 40 specimens of 34 species of the anuran family Ranidae. Results corroborated the monophyly of tiger frogs (genus Hoplobatrachus), a genus with representatives in Africa and Asia. The African H. occipitalis was the sister group of the Asian H. crassus, H. chinensis, and H. tigerinus. Hoplobatrachus was placed in a clade also containing the Asian genera Euphlyctis and Nannophrys. Combined analysis of sequences of 16S and 12S rRNA genes (total 903 bp) in a reduced set of taxa corroborated the monophyly of the lineage containing these three genera and identified the Asian genus Fejervarya as its possible sister group. The fact that the African H. occipitalis is nested within an otherwise exclusively Asian clade indicates its probable Oriental origin. Rough molecular clock estimates did not contradict the assumption that the dispersal event took place in the Miocene. Our data further identified a similar molecular divergence between closely related Asian and African species of Rana (belonging to the section Hylarana), indicating that Neogene intercontinental dispersal also may have taken place in this group and possibly in rhacophorid treefrogs.  相似文献   

10.
Dawkins  Kathryn L.  Furse  James M.  Hughes  Jane M. 《Hydrobiologia》2021,848(2):403-420

Biogeographic investigations of Gondwanan mesic Australian fauna are scarce. The burrowing clade of Australian freshwater crayfish represent an ideal group to provide biogeographic inferences, due to their extensive distribution across the continent and their presumed ancient origin. This study tested the competing hypotheses of a ‘early’ versus ‘late’ origin of this clade, coinciding with the early or late fragmentation of Gondwana, respectively. The biogeographic history of this group was investigated through: (a) examination of the phylogenetic relationships between the seven extant taxon groups; (b) reconstruction of four species trees, each using a different calibration method; and (c) reconstruction of ancestral ranges and correlation of estimated dispersal and vicariance events with historical geological data to propose plausible mechanisms responsible for driving diversification. The phylogenetic relationships between the taxon groups were generally well supported (although some uncertainty exists for the oldest genera), and all calibration methods produced concordant results. The hypothesis that the clade arose during the early fragmentation of Gondwana in southern Australia is supported. Divergence between the extant taxa likely resulted from a combination of both short- and long-distance dispersal events (often followed by later vicariance), coincident with phases of sea level oscillation and changing climate continuing into the Eocene.

  相似文献   

11.
Leaf beetles of the genus Plateumaris inhabit wetlands across the temperate zone of the Holarctic region. To explore the phylogeographic relationships among North American, East Asian, and European members of this genus and the origin of the species endemic to Japan, we studied the molecular phylogeny of 20 of the 27 species in this genus using partial sequences of mitochondrial cytochrome oxidase subunit I (COI) and the 16S and nuclear 28S rRNA genes. The molecular phylogeny revealed that three species endemic to Europe are monophyletic and sister to the remaining 11 North American and six Asian species. Within the latter clade, North American and Asian species did not show reciprocal monophyly. Dispersal-vicariance analysis and divergence time estimation revealed that the European and North America-Asian lineages diverged during the Eocene. Moreover, subsequent differentiation occurred repeatedly between North American and Asian species, which was facilitated by three dispersal events from North America to Asia and one in the opposite direction during the late Eocene through the late Miocene. Two Japanese endemics originated from different divergence events; one differentiated from the mainland lineage after differentiation from the North American lineage, whereas the other showed a deep coalescence from the North American lineage with no present-day sister species on the East Asian mainland. This study of extant insects provides molecular phylogenetic evidence for ancient vicariance between Europe and East Asia-North America, and for more recent (but pre-Pleistocene) faunal exchanges between East Asia and North America.  相似文献   

12.
Groundwater calcretes in arid central Western Australia contain a diverse invertebrate groundwater fauna (stygofauna). Surveys have uncovered a diverse oniscidean isopod subterranean fauna above the water table (troglofauna), including species of a recently described genus Paraplatyarthrus. The aim of this study was to investigate the biogeographic history of Paraplatyarthrus and the timing of transitions from surface to subterranean habitats. Phylogenetic relationships among the isopod troglofauna from 11 groundwater calcretes along three palaeodrainage systems were assessed using one mitochondrial gene, cytochrome c oxidase subunit 1 (COI), and two nuclear markers, lysyl‐tRNA synthetase (LysRS) and 18S rRNA (18S) genes. Phylogenetic analyses revealed multiple sister lineage relationships between troglophile and troglobite lineages and evidence for divergent mtDNA lineages within species, providing a range of nodes for dating evolutionary transitions from surface to subterranean habitats. Relaxed molecular clock analyses provided evidence that evolutionary transitions from surface to subterranean environments took place between 13.3 and 1.75 million years ago, coinciding with the onset of aridification of Australia from the late Tertiary. In cases where groundwater calcretes contained multiple species, the taxa were not closely related phylogenetically, suggesting that these calcretes were independently colonised by multiple ancestral species. The study further confirmed the role of late/post‐Miocene aridification as a key driver of the evolution of subterranean invertebrates in the calcrete islands of Western Australia, supporting the climatic relict hypothesis. Troglobites most likely evolved from the troglophile ancestors that were capable of dispersal among, and active colonisation of, calcretes.  相似文献   

13.
Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39–58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4–24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.  相似文献   

14.
ABSTRACT: BACKGROUND: The Cucurbitaceae genus Trichosanthes comprises 90-100 species that occur from India to Japan and southeast to Australia and Fiji. Most species have large white or pale yellow petals with conspicuously fringed margins, the fringes sometimes several cm long. Pollination is usually by hawkmoths. Previous molecular data for a small number of species suggested that a monophyletic Trichosanthes might include the Asian genera Gymnopetalum (four species, lacking long petal fringes) and Hodgsonia (two species with petals fringed). Here we test these groups' relationships using a species sampling of c. 60% and 4759 nucleotides of nuclear and plastid DNA. To infer the time and direction of the geographic expansion of the Trichosanthes clade we employ molecular clock dating and statistical biogeographic reconstruction, and we also address the gain or loss of petal fringes. RESULTS: Trichosanthes is monophyletic as long as it includes Gymnopetalum, which itself is polyphyletic. The closest relative of Trichosanthes appears to be the sponge gourds, Luffa, while Hodgsonia is more distantly related. Of six morphology-based sections in Trichosanthes with more than one species, three are supported by the molecular results; two new sections appear warranted. Molecular dating and biogeographic analyses suggest an Oligocene origin of Trichosanthes in Eurasia or East Asia, followed by diversification and spread throughout the Malesian biogeographic region and into the Australian continent. CONCLUSIONS: Long-fringed corollas evolved independently in Hodgsonia and Trichosanthes, followed by two losses in the latter coincident with shifts to other pollinators but not with long-distance dispersal events. Together with the Caribbean Linnaeosicyos, the Madagascan Ampelosicyos and the tropical African Telfairia, these cucurbit lineages represent an ideal system for more detailed studies of the evolution and function of petal fringes in plant-pollinator mutualisms.  相似文献   

15.
Aim Rain forest‐restricted plant families show disjunct distributions between the three major tropical regions: South America, Africa and Asia. Explaining these disjunctions has become an important challenge in biogeography. The pantropical plant family Annonaceae is used to test hypotheses that might explain diversification and distribution patterns in tropical biota: the museum hypothesis (low extinction leading to steady accumulation of species); and dispersal between Africa and Asia via Indian rafting versus boreotropical geodispersal. Location Tropics and boreotropics. Methods Molecular age estimates were calculated using a Bayesian approach based on 83% generic sampling representing all major lineages within the family, seven chloroplast markers and two fossil calibrations. An analysis of diversification was carried out, which included lineage‐through‐time (LTT) plots and the calculation of diversification rates for genera and major clades. Ancestral areas were reconstructed using a maximum likelihood approach that implements the dispersal–extinction–cladogenesis model. Results The LTT plots indicated a constant overall rate of diversification with low extinction rates for the family during the first 80 Ma of its existence. The highest diversification rates were inferred for several young genera such as Desmopsis, Uvariopsis and Unonopsis. A boreotropical migration route was supported over Indian rafting as the best fitting hypothesis to explain present‐day distribution patterns within the family. Main conclusions Early diversification within Annonaceae fits the hypothesis of a museum model of tropical diversification, with an overall steady increase in lineages possibly due to low extinction rates. The present‐day distribution of species within the two largest clades of Annonaceae is the result of two contrasting biogeographic histories. The ‘long‐branch clade’ has been diversifying since the beginning of the Cenozoic and underwent numerous geodispersals via the boreotropics and several more recent long‐distance dispersal events. In contrast, the ‘short‐branch clade’ dispersed once into Asia via the boreotropics during the Early Miocene and further dispersal was limited.  相似文献   

16.
Symplocarpus, Lysichiton, and Orontium (Orontioideae) are three of the few north temperate genera of the primarily tropical Araceae. Symplocarpus is disjunctly distributed in eastern Asia (3 spp.) and eastern North America (1 sp.); Lysichiton has an intercontinental discontinuous distribution in eastern Asia (1 sp.) and northwestern North America (1 sp.); and the monotypic Orontium is restricted to eastern North America. Phylogenetic analysis of the trnL-F and ndhF sequences supports (1) the monophyly of both Symplocarpus and Lysichiton, (2) the sister-group relationship of Symplocarpus and Lysichiton, and (3) the clade of Orontium, Symplocarpus, and Lysichiton. Although Symplocarpus shows a much wider disjunction than Lysichiton, the estimated divergence time of the former [4.49+/-1.69 or 6.88+/-4.18 million years ago (mya)] was similar to that of the latter (4.02+/-1.60 or 7.18+/-4.33 mya) based on the penalized likelihood and the Bayesian dating methods, respectively. Eastern Asia was suggested to be the ancestral area of the Symplocarpus-Lysichiton clade based on the dispersal-vicariance analysis. Our biogeographic results support independent migrations of Symplocarpus and Lysichiton across the Bering land bridge in the late Tertiary (Pliocene/late Miocene). Fossil evidence suggests Orontioideae dated back to the late Cretaceous in the temperate Northern Hemisphere (72 mya). The relative rate test shows similar substitution rates of the trnL-F sequences between the proto and the true aroids, although the latter has substantially higher species diversity. The proto Araceae perhaps suffered from a higher rate of extinction in the temperate zone associated with periods of climatic cooling in the Tertiary.  相似文献   

17.
Ancient dispersal history may be obscured by subsequent dispersal events. Therefore, we intend to investigate the biogeography of metriorrhynchine net-winged beetles, a group characterized by limited dispersal propensity. We used DNA data to construct phylogenies and the BayesTraits and RASP programs to identify putative ancestral areas. Further, we inferred ultrametric trees to estimate the ages of selected nodes. The time frame is inferred from tectonic calibrations and the general mutation rate of the mitochondrial genes. Metriorrhynchini consists of two lineages with Afro/Oriental and Australian distributions. The basal lineages originated in Eastern Gondwana after the split of Australia, India and Madagascar; the Afrotropical and Madagascar Metriorrhynchini separated from the Oriental clades 65 and 62 mya. Several already diversified lineages colonized continental Asia 55–35 mya. A few genera of the Australian clade dispersed to the Oriental region 5–15 mya and reached Eastern India and Southern China. Only Xylobanus crossed the Makassar Strait to Sulawesi and does not occur further to the east. The current distribution of Metriorrhynchini is a result of drifting on continental fragments and over-sea dispersal events limited to a few hundreds of kilometers. We conclude that: (1) Afrotropical and Madagascar lineages originated independently from dispersal events during India''s drift to the north and the Mozambique Channel completely isolates the respective faunas since then; (2) Oriental fauna is a recently established mixture of the Indian and Australian lineages, with predominance of the older Indian clades; (3) The fauna of islands located north of Australia colonized Sulawesi after collision with the Sundaland margin and the species rich Australian lineages did not reach Western Wallacea or the Philippines. Our results suggest an impact of subtle differences in biological characteristics on biogeographic history of individual lineages, when mostly lowland and flower-visiting lineages were able to disperse across sea channels.  相似文献   

18.
The systematics of the arid‐adapted Old World Gerbillus rodent genus has always been challenging, with many different taxonomic arrangements proposed. Beyond such taxonomic aspects, the timing and geographical pattern of the evolutionary history of this group remains largely unknown. Based on mitochondrial (cytochrome b) and nuclear (interphotoreceptor retinoid‐binding protein) sequences obtained from the specimens of 21 species, we conducted a phylogenetic analysis of the group, estimated the ages and putative ancestral ranges of its major lineages. Four major clades were clearly retrieved within Gerbillus, for which we propose a subgenus rank. We showed that the emergence of the genus dates back to the end of the Miocene, which corresponds to a period of aridification and C4 vegetation expansion in open habitats, while the four sublineages originated at the end of the Pliocene. Most subsequent diversification events occurred during the Pleistocene, a period characterized by recurrent climatic/environmental shifts with increasing aridification during the last two millions of years. Finally, we suggested that most of the Gerbillus evolutionary history took place in Africa. Only in a few instances did dispersal events from Africa to Asia give birth to extant Asian lineages, a pattern that contrasts with what has been found in many animal groups.  相似文献   

19.
The large daisy tribe Gnaphalieae occurs in extra-tropical habitats worldwide, but is most diverse in southern Africa and in Australia. We explore the age and evolutionary history of the tribe by means of a phylogenetic hypothesis based on Bayesian analysis of plastid and nuclear DNA sequences, maximum likelihood reconstruction of ancestral areas, and relaxed Bayesian dating. Early diversification occurred in southern Africa in the Eocene-Oligocene, resulting in a grade of mostly Cape-centred lineages which subsequently began speciating in the Miocene, consistent with diversification times for many Cape groups. Gnaphalieae from other geographic regions are embedded within a southern African paraphylum, indicating multiple dispersals out of southern Africa since the Oligocene to Miocene which established the tribe in the rest of the world. Colonisation of Australia via direct long-distance trans-oceanic dispersal in the Miocene resulted in the radiation which produced the Australasian gnaphalioid flora. The similarly diverse regional gnaphalioid floras of Australasia and southern Africa thus exhibit very different temporal species accumulation histories. An examination of the timing and direction of trans-Indian Ocean dispersal events in other angiosperms suggests a role for the West Wind Drift in long-distance dispersal eastwards from southern Africa.  相似文献   

20.
狭义蛇葡萄属(Ampelopsis s. str.)是葡萄科的落叶木质藤本植物,主要分布在北半球温带地区,特别是东亚为其重要的分布和演化中心。该研究选取了狭义蛇葡萄属15个种的37个样本,对其5个叶绿体基因片段(trnL-F、rps16、psbA-trnH、atpB-rbcL和trnK-petN)和2个核基因标记(ITS和GAI1)进行了分子测序;利用测序获得的分子数据探讨属内的系统发生关系,叶的性状演化以及生物地理起源演化。结果表明:(1)狭义蛇葡萄属是一个单系类群,属内东亚地区的物种聚成一支。(2)叶绿体基因数据分析结果表明,狭义蛇葡萄属东亚支系分为两支系,这两支系的分布范围大致与东亚植物区系的中国-日本森林和中国-喜马拉雅森林亚区范围相一致。(3)形态演化分析表明,掌状复叶为祖征,叶形态性状存在多次的独立起源和演化,其变化与系统进化没有明显的关系。(4)生物地理分析结果表明,狭义蛇葡萄属起源于北美,渐新世晚期至中新世早期迁移扩散至欧洲,中新世中期随着全球气温回暖迁移至东亚,并进一步在东亚地区快速分化形成多样化中心,这可能与中新世时期的气候温暖、受第四纪冰川影响较少以及东亚地区复杂...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号