首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

2.
Dispersal, i.e. movements potentially leading to gene flow, is central in evolutionary ecology. Many factors can trigger dispersal, all linked to the social and/or the environmental context. Moreover, it is now widely demonstrated that phenotypes with contrasted dispersal abilities coexist within populations of a same species. The current challenge is to elucidate how social and environmental factors will influence the dispersal decision of individuals with distinct phenotypes. We have used the Metatron, a unique experimental mesocosm dedicated to the study of dispersal within fragmented landscapes, to analyze the relative and interactive roles played by ten potential dispersal triggers in experimental two‐patch metapopulations of butterflies. We demonstrate in our model species that some factors (flight performance and wing length) have direct effects on emigration decision, others act only through interactive effects (sex ratio), while a third class of factors presents both direct and interactive effects (weather conditions, habitat quality and sex). We also show that disperser and resident individuals have distinct behavioral and morphological attributes, revealing the existence of a dispersal syndrome. Finally, our results also suggest that the environmental context, and especially weather conditions and habitat quality, prevails over social factors and individual phenotypes in butterflies' decision to disperse. Our approach is applicable to many species facing medium to strong environmental fluctuations, and constitutes a new way to master the idiosyncrasy of the dispersal process. Our framework should also help prioritize the factors responsible for populations' spatial distribution, which is obviously crucial in the current era of global changes.  相似文献   

3.
An important process for the persistence of populations subjected to habitat loss and fragmentation is the dispersal of individuals between habitat patches. Dispersal involves emigration from a habitat patch, movement between patches through the surrounding landscape, and immigration into a new suitable habitat patch. Both landscape and physical condition of the disperser are known to influence dispersal ability, although disentangling these effects can often be difficult in the wild. In one of the first studies of its kind, we used an invertebrate model system to investigate how dispersal success is affected by the interaction between the habitat condition, as determined by food availability, and life history characteristics (which are also influenced by food availability). Dispersal of juvenile and adult mites (male and female) from either high food or low food natal patches were tested separately in connected three patch systems where the intervening habitat patches were suitable (food supplied) or unsuitable (no food supplied). We found that dispersal success was reduced when low food habitat patches were coupled to colonising patches via unsuitable intervening patches. Larger body size was shown to be a good predictor of dispersal success, particularly when the intervening landscape is unsuitable. Our results suggest that there is an interaction between habitat fragmentation and habitat suitability in determining dispersal success: if patches degrade in suitability and this affects the ability to disperse successfully then the effective connectance across landscapes may be lowered. Understanding these consequences will be important in informing our understanding of how species, and the communities in which they are embedded, may potentially respond to habitat fragmentation.  相似文献   

4.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

5.
Community assembly through species invasions is a long-term process, for which vital information regarding future trends can be contained in current patterns. Using comparative analyses of native and exotic plant assemblages from meadow patches on islands in British Columbia, Canada, we examined multiple lines of evidence for ‘invasion debt’, a latent expansion of exotic species populations. We show that: (1) short-dispersing species are underrepresented compared to their long-dispersing counterparts in exotic species only; (2) among species that are invasive elsewhere in North America, a greater proportion of long dispersers are common in the study area and a greater proportion of short dispersers are rare; and (3) time since arrival in the study region is positively related to number of occurrences in exotic species. In addition, we show that a suite of exotic species possesses the facility of rapid long-distance dispersal and ability to establish viable populations on even the most isolated and least disturbed patches. While some highly-dispersive exotic species can rapidly colonize new areas, short dispersers appear to exhibit invasion debt, with their potential distributions only being realized in the long term. Removing or even reducing populations of many rapid colonizers could be extremely difficult; however, for species exhibiting patterns most consistent with invasion debt, an opportunity exists for monitoring and removal to help reduce potential competition with native species.  相似文献   

6.
Habitat structure increases the persistence of many extinction‐prone resource–consumer interactions. Metapopulation theory is one of the leading approaches currently used to explain why local, ephemeral populations persist at a regional scale. Central to the metapopulation concept is the amount of dispersal occurring between patches, too much or too little can result in regional extinction. In this study, the role of dispersal on the metapopulation dynamics of an over‐exploitative host–parasitoid interaction is assessed. In the absence of the parasitoid the highly vagile bruchid, Callosobruchus maculatus, can maintain a similar population size regardless of the permeability of the inter‐patch matrix and exhibits strong negative density‐dependence. After the introduction of the parasitoid the size of the bruchid population decreases with a corresponding increase in the occurrence of empty patches. In this case, limiting the dispersal of both species decouples the interaction to a greater extent and results in larger regional bruchid populations. Given the disparity between the dispersal rates of the two species, it is proposed that the more dispersive host benefits from the reduction in landscape permeability by increasing the opportunity to colonise empty patches and rescue extinction prone populations. Associated with the introduction of the parasitoid is a shift in the strength of density‐dependence as the population moves from bottom–up towards top–down regulation. The importance of local and regional scale measurements is apparent when the role of individual patches on regional dynamics is considered. By only taking regional dynamics into account the importance of dispersal regime on local dynamics is overlooked. Similarly, when local dynamics were examined, patches were found to have different influences on regional dynamics depending on dispersal regime and patch location.  相似文献   

7.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

8.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

9.
Mike S. Fowler 《Oikos》2009,118(4):604-614
The decision to move between patches in the environment is among the most important life history choices an organism can make. I derive a new density dependent dispersal rule, and examine how dispersal decisions based on avoiding fitness loss associated with an Allee effect or competitive effects impact upon population dynamics in spatially structured populations with qualitatively different dynamics. I also investigate the effects of the number of patches in the system and a limit to the patch sampling time available to dispersers. Dispersing to avoid competitive pressures can destabilise otherwise stable population dynamics, and stabilise chaotic dynamics. Dispersing to avoid an Allee effect does not qualitatively change local population dynamics until eventually driving unstable populations to global extinction with a sufficiently high fitness threshold. A time limit for sampling can stabilise dynamics if dispersal is based on escaping the Allee effect, and rescue populations from global extinction. The results are sensitive to the number of patches available in the environment and suggest that dispersal to avoid an Allee effect will only arise under biologically plausible conditions, i.e. where there is a limit to the number of dispersal attempts that can be made between generations.  相似文献   

10.
Dispersal between habitat patches may be important for the long-term persistence of populations. We conducted a mark–release–recapture study and analysed the dispersal pattern in the scarce heath butterfly inhabiting a network of suitable habitat patches using stepwise logistic regression (SLR) and the Virtual Migration (VM) model. We also analysed the influence of different types of matrices. We found that the majority of the recaptured butterflies remained within the patch where they were originally caught. However, dispersal between patches did occur and both the SLR analysis and the VM model indicated that the migration pattern was significantly associated with patch area and its level of isolation. The SLR model also showed that there was a positive association between immigration rate and tree density, supporting earlier observations that this species prefers semi-open habitat. We discuss the use of SLR versus the VM model to analyse recapture data in dispersal studies. This system is not at equilibrium, as a number of the most important patches in the network are continuously being lost due to afforestation and a number of populations are facing deterministic extinction. This increases the risk of a chain reaction of local extinctions, which may cause a collapse of the whole system.  相似文献   

11.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

12.
Horvitz  C. C.  Le Corff  J. 《Plant Ecology》1993,107(1):351-362
The population level correlates of contrasting dispersal syndromes in closely related species are largely unknown. A family of tropical understory herbs, the Marantaceae, provides the opportunity for comparative studies as it contains many species with contrasting dispersal syndromes. As part of a study of the comparative population biology of ant- and bird-dispersed species, we test the hypothesis that spatial scale and dispersion pattern are related to dispersal type, proposing that bird-dispersed species will have a larger spatial scale than ant-dispersed species, and that, among bird-dispersed species, the scale will vary among three distinct dispersal types. We also propose that ant-dispersed species will show a more clumped dispersion pattern than the bird-dispersed species. Two types of spatial scale are examined: the amount of space occupied by individuals (maximum and actual) and the spacing among individuals within populations. The maximum size of plants showed a trend in the predicted direction. However, this trend was only of marginal statistical significance. The actual distribution of plant sizes, as measured by total leaf area and classified logarithmically, differed significantly among the dispersal types in the predicted direction. Spacing among individuals as measured by nearest neighbor distances also varied significantly by dispersal type, but not entirely in the predicted direction. Dispersion pattern analysis indicated that most study species in most populations had significantly clumped spatial patterning. The aggregation index varied 20-fold among study plots, but did not vary significantly by dispersal type. We conclude that while spatial scale was related generally to type of dispersal, dispersion pattern was not.  相似文献   

13.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   

14.
Network topography ranges from regular graphs (linkage between nearest neighbours only) via small-world graphs (some random connections between nodes) to completely random graphs. Small-world linkage is seen as a revolutionary architecture for a wide range of social, physical and biological networks, and has been shown to increase synchrony between oscillating subunits. We study small-world topographies in a novel context: dispersal linkage between spatially structured populations across a range of population models. Regular dispersal between population patches interacting with density-dependent renewal provides one ecological explanation for the large-scale synchrony seen in the temporal fluctuations of many species, for example, lynx populations in North America, voles in Fennoscandia and grouse in the UK. Introducing a small-world dispersal kernel leads to a clear reduction in synchrony with both increasing dispersal rate and small-world dispersal probability across a variety of biological scenarios. Synchrony is also reduced when populations are affected by globally correlated noise. We discuss ecological implications of small-world dispersal in the frame of spatial synchrony in population fluctuations.  相似文献   

15.
An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.  相似文献   

16.
Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite‐mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.  相似文献   

17.
Interactions between two species competing for space were studied using stochastic spatially explicit lattice-based simulations as well as pair approximations. The two species differed only in their dispersal strategies, which were characterized by the proportion of reproductive effort allocated to long-distance (far) dispersal versus short-distance (near) dispersal to adjacent sites. All population dynamics took place on landscapes with spatially clustered distributions of suitable habitat, described by two parameters specifying the amount and the local spatial autocorrelation of suitable habitat. Whereas previous results indicated that coexistence between pure near and far dispersers was very rare, taking place over only a very small region of the landscape parameter space, when mixed strategies are allowed, multiple strategies can coexist over a much wider variety of landscapes. On such spatially structured landscapes, the populations can partition the habitat according to local conditions, with one species using pure near dispersal to exploit large contiguous patches of suitable habitat, and another species using mixed dispersal to colonize isolated smaller patches (via far dispersal) and then rapidly exploit those patches (via near dispersal). An improved mean-field approximation which incorporates the spatially clustered habitat distribution is developed for modeling a single species on these landscapes, along with an improved Monte Carlo algorithm for generating spatially clustered habitat distributions.   相似文献   

18.
19.
Genetic connectivity is a key factor for maintaining the persistence of populations in fragmented landscapes. In highly modified landscapes such us peri-urban areas, organisms’ dispersal among fragmented habitat patches can be reduced due to the surrounding matrix, leading to subsequent decreased gene flow and increased potential extinction risk in isolated sub-populations. However, few studies have compared within species how dispersal/gene flow varies between regions and among different forms of matrix that might be encountered. In the current study, we investigated gene flow and dispersal in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus) in a heavily modified peri-urban landscape in South Australia, Australia. We used 14 microsatellite markers to genotype 254 individuals which were sampled from 15 sites. Analyses revealed significant genetic structure. Our analyses also indicated that dispersal was mostly limited to neighbouring sites. Comparisons of these results with analyses of a different population of the same species revealed that gene flow/dispersal was more limited in this peri-urban landscape than in a pine plantation landscape approximately 400 km to the south-east. These findings increase our understanding of how the nature of fragmentation can lead to profound differences in levels of genetic connectivity among populations of the same species.  相似文献   

20.
While spatial synchrony of oscillating populations has been observed in many ecological systems, the causes of this phenomenon are still not well understood. The most common explanations have been the Moran effect (synchronous external stochastic influences) and the effect of dispersal among populations. Since ecological systems are typically subject to large spatially varying perturbations which destroy synchrony, a plausible mechanism explaining synchrony must produce rapid convergence to synchrony. We analyze the dynamics through time of the synchronizing effects of dispersal and, consequently, determine whether dispersal can be the mechanism which produces synchrony. Specifically, using methods new to ecology, we analyze a two patch predator-prey model, with identical weak dispersal between the patches. We find that a difference in time scales (i.e. one population has dynamics occurring much faster than the other) between the predator and prey species is the most important requirement for fast convergence to synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号