首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of scanning and transmission microscopy it has been examined the ciliary system of the tongue mucosa. The scanning electronmicrographs of the fungiform papillae have revealed three ciliary apparatuses allocated respectively: at the papillary summit (corona ciliata and a narrow but separated paracoronal ciliary system) and on the peduncolar papillary stem. The cilia of both paracoronal and peduncolar groups have not been yet described. Also the filiform papillae are supplied with cilia but as irregularly distributed groups. The border of the tongue is a continuous and normal ciliary epithelium and finally groups of cilia are scattered also on the whole sublingual epithelium. At the transmission microscopy the cells of all the examined mucosal ciliary groups are showing a normal ultrastructural aspect.  相似文献   

2.
3.
Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) feed on fleshy fruit and nectar of flowers and have an important role in pollination and seed dispersal. It was expected that their buccal morphological structures are adapted to this type of feeding. Consequently, buccal cavity and lingual structures of E. wahlbergi were examined by extended focus light microscopy (LM) and scanning electron microscopy (SEM). Morphology of the tongue of E. wahlbergi was similar to that of other fruit- and nectar-feeding bats. The elongated tongue of these bats possessed filiform and conical papillae as mechanical papillae and fungiform and circumvallate papillae as gustatory papillae that varied in distribution. Epomophorus wahlbergi had five palatal ridges and one post-dental palatal ridge, and relatively wide, flattened molar teeth. A hard, papillae structure at the posterior end of the upper palate of the upper plate, which has not been previously described, was observed. It appears that this structure works together with the palatal ridges and teeth, so that the bats crush fleshy fruits during feeding and extract the juices before discarding the pulp. Consequently, lingual and particularly palatal structures of E. wahlbergi show morphological adaptations for efficiently feeding on fleshy fruit and nectar.  相似文献   

4.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

5.
石光荣 《古生物学报》2002,41(1):105-118
描述了产于四川邻水地区早二叠世梁山组的一新属新种,Linshuichonetes elfinis gen.et sp.nov.。新属以个体特别微小,背内无任何隔板,壳表饰有细瘤和细刺为特征。新种代表了华南地区阳新期海侵开始阶段生活于局限的潮坪或xi湖环境下的一种机会种。  相似文献   

6.
Quantitative trait loci (QTLs) analysis has been used to examine natural variation of phenotypes in the mouse somatosensory cortex, hippocampus, cerebellum, and amygdala. QTL analysis has also been utilized to map and identify genes underlying anatomical features such as muscle, organ, and body weights. However, this methodology has not been previously applied to identification of anatomical structures related to gustatory phenotypes. In this study, we used QTL analysis to map and characterize genes underlying tongue size, papillae number, and papillae area. In a set of 43 BXD recombinant inbred (RI) mice (n = 111) and 2 parental strains (C57BL/6J and DBA/2J; n = 7), we measured tongue length, width, and weight. In a subset of 23 BXD RI mice and the parental mice, we measured filiform and fungiform papillae number and fungiform papillae area. Using QTL linkage analysis (through WebQTL), we detected 2 significant and noninteracting QTLs influencing tongue length on chromosomes 5 and 7. We also found a significant QTL on chromosome 19 underlying fungiform papillae area and a suggestive QTL on chromosome 2 linked to fungiform papillae number. From these QTLs, we identified a number of candidate genes within the QTL intervals that include SRY-box containing gene, nebulin-related anchoring protein, and actin-binding LIM protein 1. This study is an important first step in identifying genetic factors underlying tongue size, papillae size, and papillae number using QTL analysis.  相似文献   

7.
Stephanofilaria thelazioides n. sp. (Filarioidea: Filariidae: Stephanofilariinae) is described from a hippopotamus Hippopotamus amphibius. This nematode is close to S. dinniki Round, 1964, a parasite of the black rhinoceros Diceros bicornis in Africa, but differs from it in the number of cuticular spines surrounding the mouth, the arrangement of the cloacal papillae and the measurements of the spicules, gubernaculum and microfilariae. Species of the genus Stephanofilaria possess spines on the head which have been derived by modification of the sensory papillae. S. thelazioides is the most primitive species of the genus and has the least modified arrangement of these papillae, with six bifid internal labial spines, four bifid external labial spines and four cephalic papillae. The genus appears to have diversified in various mammals which have in common a thick skin, such as rhinoceroses, elephants, buffaloes and now the hippopotamus. It appears to have become adapted secondarily to domestic bovines, initially in Asia and subsequently in North America.  相似文献   

8.
9.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

10.
In embryological terms the anal papillae are the product of eversion of the hindgut tissues. The rectum and the anal papillae have the same origin and have a marked structural similarity. The insect hindgut is very labile being able to produce salt transporting or ‘chloride cells’ from any of the tissues of which it is composed.The hindgut consists of four distinct regions: the ileum and part of the anal canal have a mechanical function, the rectum and the posterior anal canal contain transporting cells. Two new cell types, ‘interstitial’ and ‘tertiary’ are reported in the rectum.The structure of the anal papillae changes with increased salinity. Changes in the plasma membranes alter the surface area for transport. Changes in the number of mitochondria are not accompanied by changes in oxygen consumption. If mitochondria are the site of oxidative metabolism then their number docs not control the level of oxygen consumption.In Aedes aegypti the papillary epithelium appears to be a syncytium. Across the lumen of the papillae there are cellular sheets supporting the tracheoles. At the base of the papillae there is a cellular transition zone; circular muscles in this region may be used to occlude the papillae. The control of salt transport may be hormonal.  相似文献   

11.
The morphological characteristics of bovine and equine gustatory lingual papillae are compared by scanning electron microscopy. The fungiform papillae in the cow have a shape that corresponds to their name, while in the horse, they almost do not emerge from the surface of the tongue. These papillae show taste pores in both species. The vallate papillae, four times larger in the horse than in the cow, show a complex organization of papillae and secondary grooves in the horse. In the cow, they occur single and are surrounded by a thick annular pad of lingual mucosa. Taste pores have been observed in the vallate papillae of both species, whereas in the foliate papillae, they are present only in the horse. A characteristic distribution of stratified scales and channeled tracts is observed on the surface of all gustatory papillae in both species. The possible functional importance of each type of gustatory papilla is discussed on the basis of their morphostructural features.  相似文献   

12.
The amphibian tongue contains two types of papilla which are believed to function in gustation and in the secretion of salivary fluid. Scanning electron microscopy reveals that columnar, filiform papillae are compactly distributed over nearly the entire dorsal surface of the tongue of the frog, Rana cancrivora, and fungiform papillae are scattered among the filiform papillae. Microridges and microvilli are distributed on the epithelial cell surface of the extensive area of the filiform papillae. Light microscopy shows that the apex of each filiform papilla is composed of stratified columnar and/or cuboidal epithelium and its base is composed of simple columnar epithelium. Transmission electron microscopy reveals that most of the epithelium of the filiform papillae is composed of cells that contain numerous round electron-dense granules 1–3 μm in diameter. Cellular interdigitation is well developed between adjacent cells. On the free-surface of epithelial cells, microridges or microvilli are frequently seen. Between these granular cells, a small number of ciliated cells, mitochondria-rich cells and electron-lucent cells are inserted. In some cases, electron-dense granules are present in the ciliated cells. At higher magnification, the electron-dense granules appear to be covered with patterns of spots and tubules. Overall, the morphology and ultrastructure of the lingual epithelium of the three species of Rana that have been studied are quite similar, but they can be easily distinguished from those of Bufo japonicus. Therefore, it appears that lingual morphology is phylogenetically constrained among members of the predominantly freshwater genus Rana to produce uniformity of papillary structure and this morphology persists in Rana cancrivora despite the distinct saline environment in which it lives. © 1993 Wiley-Liss, Inc.  相似文献   

13.
《The Journal of cell biology》1986,103(6):2583-2591
The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibiting different forms of keratinization. Thus, the entire epithelium shows a pronounced morphological diversity of well recognizable tissue units. We have used a highly sensitive in situ hybridization technique to investigate the differential expression of keratin mRNAs in the tongue epithelium. The hybridization probes used were cDNA restriction fragments complementary to the most specific 3'-regions of any given keratin mRNA. We could show that independent of the morphologically different tongue regions, all basal cells uniformly express the mRNA of a type I 52-kD keratin, typical also for basal cells of the epidermis. Immediately above the homogenous basal layer a vertically oriented specialization of the keratin expression occurs within the morphological tissue units. Thus the dorsal interpapillary and ventral epithelium express the mRNAs of a type II 57-kD and a type I 47-kD keratin pair. In contrast, in the anterior unit of the filiform papillae, only the 47-kD mRNA is present, indicating that this keratin may be coexpressed in tongue epithelium with different type II partners. In suprabasal cells of both, the fungiform papillae and the posterior unit of the filiform papillae, a mRNA of a type I 59-kD keratin could be detected; however, its type II 67-kD epidermal counterpart seems not to be present in these cells. Most surprisingly, in distinct cells of both types of papillae, a type I 50-kD keratin mRNA could be localized which usually is associated with epidermal hyperproliferation. In conclusion, the in situ hybridization technique applied has been proved to be a powerful method for detailed studies of differentiation processes, especially in morphologically complex epithelia.  相似文献   

14.
Although cryosurgery of oral tissues has been extensively studied, there is little information concerning healing and repapillation of the dorsum of the tongue. Using light, transmission, and scanning electron microscopy, an investigation of the sequence of reformation of papillae was carried out in the hamster. Four days postoperatively there was mitotic activity and cell migration at the periphery of the wound. At the edge of the ulcer there were partially damaged tongue papillae with evidence of recovery. Damaged papillae had regenerated completely within 2 weeks. In the central ulcerated area, epithelium healed by migration and, within this new epithelium, tongue papillae commenced to form by a process similar to that seen in the fetal tongue. Repapillation of the central area of the lesion was complete 6 weeks after operation, leaving minimal scarring. The details of these processes are described.  相似文献   

15.
16.
Summary Distribution of prolactin has been examined in regenerating forelimbs from the newt Notophthalmus viridescens. Specific prolactin binding was demonstrated in homogenates of unamputated tissue, and of regenerating limbs at from 3 to 21 days postamputation. Labeled prolactin that was injected intraperitoneally into animals with one regenerating limb accumulated in the most distal portion of the regenerate at 7 and 14 days postamputation. Light microscopic autoradiography demonstrated that labeled prolactin was localized most heavily in the apical, outer layer of the wound epithelium. Scanning electron microscopy demonstrated that, in addition to changes in prolactin affinity following amputation, morphological changes occurred in the apical wound epithelium as well. Cell surfaces of the stump epidermis were characterized by periodic dispersion of papillae among a network of interconnecting structures 1–2 m across. By contrast, the surfaces of cells from the area in which labeled prolactin was found to localize most intensely were characterized by lack of papillae and, depending on the stage of regeneration, a pattern of microvilli and microplicae. These morphological alterations appear to reflect functional and biochemical differences between stump epidermis and wound epithelium.  相似文献   

17.
The rice genus (Oryza L. ) belongs to the grass family(Poaceae) and contains 24 annual or perennial species, including two cultivated rice species, i.e., the Asian rice ( O. sativa L. ) and African rice (O. glaberrima Steud. ), and 22 wild species distributed throughout the tropics of the world. Species in this genus have been extensively studied by scientists with different approaches, including morphological characterization and cytological and molecular investigations. The leaf epidermis is an important morphological character which has been studied for taxonomic identification and studies on systematic relationships of species, particularly in grasses. In this study, morphological features of the leaf epidermis of 23 rice species were observed through light microscopy. The results showed that some characters of the rice leaf epidermis had significant diversity between species and these characters were valuable for the identifying Oryza species, and for assessing systematic relationships in the genus. For example, O.schlechteri, O.ridleyi, O.longiglumis, O.granulata, and O. rneyeriana had elliptic stomatal complexes, whereas the other species had rhombic stomatal complexes. In most cases, papillae on the surface of the epidermis were variable in size and distribution between species. The size of papillae varied from small ( 1.5~4.4µm in diameter), medium-sized (9~18µm), to large (21~30µm) , and the pattern of papillary size and distribution were very useful for identification of rice species. In addition, the number and location of the small papillae in stomatal complexes were particularly different between species. Based on the following combinations of leaf-epidermic characters, i.e., the size and distribution of papillae on the abaxial surface of the epidermis, the number and location of the small papillae in stomatal complexes, and the shape of stomatal complexes, the 23 studied Oryza species could be divided into three major groups. The first group comprises O.longiglumis, O.ridleyi, O.meyeriana, and O.granulata. In these species, neither large nor medium-sized papillae, in some cases extremely rare small papillae, were found on the surfaces of epidermis, and there were no small papillae found in stomatal complexes. All species in the first group had elliptic stomatal complexes. The second group consists of O.brachyantha, diploid and tetraploid O.officinalis, O.minuta, O.eichingeri, O. punctata, O.latifolia, O.alta, O.grandiglumis, O.rhizomatis, and O.australiensis. In these species usually no large papillae were observed, but medium-sized and densely populated small papillae were found to cover the surface of epidermis, and at least four small papillae were found in stomatal complexes (in guard cells) of most species. The third group contains O.sativa, O.nivara, O.rufipogon, O.longistaminata, O. glumaepatula, O.meridionalis, O.barthii, O.glaberrima and O. schlechteri. The abaxial leaf epidermis of these species was usually covered with large papillae, medium-sized, and small papillae. In addition, more than 4 (usually 6~8 ) small papillae were found in guard cells or/and subsidiary cells of the stomatal complexes. Most species in the second and third groups had rhombic stomatal complexes. These results agree mostly with previous re-ports on the biosystematic studies of rice species by applying other methodologies.  相似文献   

18.
The oxygen consumption of a single ascidian larva was measured. After hatching the consumption increases gradually. During the period of tail resorption it also increases gradually, but after the completion of tail resorption the consumption decreases conspicuously.
With the development of the larva after hatching, the activities of cytochrome oxidase and succinic dehydrogenase and of Janus green-reduction become detectable in the adhesive papillae, the proximal region of the tail, and the tail muscle. After the completion of tail resorption, these activities become indistinct.
These tissues underwent most profound morphological changes at the onset of metamorphosis. Soon after hatching, Janus green has no effect to induce metamorphosis. In larvae 4 hr after hatching, the shrinkage of adhesive papillae can be induced by Janus green-treatment. In 12 hr larvae, both the shrinkage of adhesive papillae and the tail resorption can be induced by Janus green. The enhancement of respiratory activities in the larvae after hatching may be related to the changes in the adhesive papillae and later to changes in the proximal region of the tail. Only when both of these changes occur can metamorphosis be induced.  相似文献   

19.
The functional differentiation of odontoblasts requires specific interactions between these cells and the extracellular matrix. To further analyze these phenomena we studied the effects of a "dental papillae biomatrix" on isolated dental papillae cultured in vitro. The dental papillae biomatrix was extracted from EDTA-dissociated day-18 mouse dental papillae by homogenization, NaCl and enzymatic treatments, and deposited on Millipore filters. This biomatrix was studied by means of transmission electron microscopy and indirect immunofluorescence: it contained collagen fibrils, type IV collagen, fibronectin and laminin; cellular residues were also observed. The dental papillae were isolated by trypsin treatment of homologous tooth germs and cultured on uncoated (control) and coated filters. As shown by histological and cytological data, odontoblast-like cells never differentiated in control cultures. In presence of biomatrix and serum, polarized functional cells were observed. The functional state of these cells was enhanced by the addition of ascorbic acid to the culture media. Study of the incorporation of 3H-proline in cultured dental papillae and in macromolecules secreted into the culture media corroborated the morphological findings.  相似文献   

20.
This study was carried out on a comprehensive collection of tongues of Pan troglodytes. Material of tongues of Tupaia glis, Microcebus murinus, Chirogaleus major, Lemur catta, Galago crassicaudatus, Cebus apella, and Macaca mulatta were used for comparison of the different stages of the development of the papilla foliata. The tongue of Pan exhibits longitudinal growth correlated with the growth of length of the jaws and individual age. A typical foramen caecum as it occurs in man was gross anatomically not recognizable. Seldom a small circular depression appeared in the midline close to the papilla circumvallata centralis which could be the remnant of the foramen caecum. There is a remarkable accumulation of papillae filiformes and fungiformes at the apex linguae; the same seems to be true for other genera of primates. It is self-explanatory that the accumulation of papillae makes the tip of the tongue a particularly sensitive area; this has been found to be true even in man. One specimen of the prenatal age just before term was studied. It exhibited remarkably elongated, thread-like papillae, their function is unknown as yet. They are no longer present in a newborn specimen of 4 d of age. In the aboral part of the dorsum linguae, a special kind of papillae occur; they are flat lobes which carry moderately elongated, tiny processes at their free margin. The function of these papillae is unknown; taste buds are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号