首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antigenic variants of pseudorabies virus (PRV) containing mutations in a viral glycoprotein with a molecular weight of 82,000 (gIII) were isolated by selecting for resistance to a complement-dependent neutralizing monoclonal antibody (MCA82-2) directed against gIII. These mutants were completely resistant to neutralization with MCA82-2 in the presence of complement. Two mutants selected for further studies either did not express gIII or expressed an improperly processed form of the glycoprotein. The mutations were also associated with an altered plaque morphology (syncytium formation). The gIII gene was mapped by marker rescue of a gIII- mutant with cloned restriction enzyme fragments to the long unique region of the PRV genome between 0.376 and 0.383 map units. This corresponds to the map location of a glycoprotein described by Robbins et al. (J. Mol. Appl. Gen. 2:485-496, 1984). Since gIII is nonessential for viral replication in cell culture and has several other characteristics in common with the herpes simplex virus glycoprotein gC, gIII may represent the PRV equivalent to herpes simplex virus gC.  相似文献   

2.
On the basis of DNA sequence analysis, it has recently been shown that the pseudorabies virus (PrV) genome encodes a protein homologous to glycoprotein H (gH) of other herpesviruses (B. Klupp and T.C. Mettenleiter, Virology 182:732-741, 1991). To obtain antibodies specific for gH(PrV), rabbits were immunized with synthetic peptides representing two potential epitopes on gH(PrV) as predicted by computer analysis. The antipeptide sera recognized the gH precursor polypeptide pgH translated in vitro from an in vitro-transcribed mRNA. Western blot (immunoblot) analyses of purified pseudorabies virions using these antisera revealed specific reactivity with a protein with an apparent molecular mass of 95 kDa. Specificity of the reaction could be demonstrated by competition experiments with respective peptides. Analysis of PrV deletion mutants defective in genes encoding known glycoproteins proved that gH(PrV) constitutes a novel PrV glycoprotein not previously found. Treatment of purified virion preparations with endoglycosidase H reduced the apparent molecular mass of gH(PrV) to 90 kDa, indicating the presence of N-linked high-mannose (or hybrid) carbohydrates in mature virions. Removal of all N-linked carbohydrates by N-glycosidase F resulted in a product of 76 kDa. In summary, our results demonstrate the existence of gH in PrV as a structural component of the virion.  相似文献   

3.
Herpesvirus envelope glycoproteins play important roles in the interaction between virions and target cells. In the alphaherpesvirus pseudorabies virus (PrV), seven glycoproteins that all constitute homologs of glycoproteins found in herpes simplex virus type 1 (HSV-1) have been characterized, including a homolog of HSV-1 glycoprotein H (gH). Since HSV-1 gH is found associated with another essential glycoprotein, gL, we analyzed whether PrV also encodes a gL homolog. DNA sequence analysis of a corresponding part of the UL region adjacent to the internal inverted repeat in PrV strains Kaplan and Becker revealed the presence of two open reading frames (ORF). Deduced proteins exhibited homology to uracil-DNA glycosylase encoded by HSV-1 ORF UL2 (54% identity) and gL encoded by HSV-1 ORF UL1 (24% identity), respectively. To identify the PrV UL1 protein, rabbit antisera were prepared against two synthetic oligopeptides that were predicted by computer analysis to encompass antigenic epitopes. Sera against both peptides reacted in Western blots of purified virions with a 20-kDa protein. The specificity of the reaction was demonstrated by peptide competition. Since the PrV UL1 sequence did not reveal the presence of a consensus N-linked glycosylation site, concanavalin A affinity chromatography and enzymatic deglycosylation of virion glycoproteins were used to ascertain that the PrV UL1 product is O glycosylated. Therefore, we designated this protein PrV gL. Analysis of mutant PrV virions lacking gH showed that concomitantly with the absence of gH, gL was also missing in purified virions. In summary, we identified and characterized a novel structural PrV glycoprotein, gL, which represents the eighth PrV glycoprotein described. In addition, we show that virion location of PrV gL is dependent on the presence of PrV gH.  相似文献   

4.
Positional homologs to the UL51 open reading frame of herpes simplex virus type 1 have been identified throughout the herpesvirus family. However, no respective protein has so far been described for any of the herpesviruses. With rabbit antisera directed against oligopeptides predicted to comprise antigenic regions of the deduced pseudorabies virus (PrV) UL51 protein, a polypeptide with a size of 30 kDa was identified in PrV-infected cell lysates and in purified virions. This molecular mass correlates reasonably well with the predicted mass of 25 kDa of the 236-amino-acid deduced UL51 protein. Antisera raised against peptides derived from different predicted antigenic regions all detected the 30-kDa protein in Western blot (immunoblot) analyses. Specificity was ascertained by peptide competition. Subcellular fractionation showed the presence of the UL51 protein mainly in the nucleus of infected cells. After separation of purified virion preparations into envelope and capsid, the PrV UL51 protein was detected in the capsid fraction. In summary, we identified the first herpesvirus UL51 protein and demonstrate that it represents a structural component of PrV virions.  相似文献   

5.
Identification and characterization of pseudorabies virus dUTPase.   总被引:3,自引:5,他引:3       下载免费PDF全文
Sequence analysis within the long segment of the pseudorabies virus (PrV) genome identified an open reading frame of 804 bp whose deduced protein product of 268 amino acids exhibited homology to dUTPases of other herpesviruses. The gene was designated UL50 because of its colinearity with the homologous gene of herpes simplex virus type 1. An antiserum raised against a bacterially expressed fragment of PrV UL50 specifically detected a 33-kDa protein in lysates of infected cells, which is in agreement with the predicted molecular mass of the PrV UL50 protein. A UL50-negative PrV mutant (PrV UL50-) was constructed by the insertion of a beta-galactosidase expression cassette into the UL50 coding sequence. A corresponding rescuant (PrV UL50resc) was also isolated. The interruption of the UL50 gene led to the disappearance of the 33-kDa protein, whereas restoration of UL50 gene expression restored detection of the 33-kDa protein. Enzyme activity assays confirmed that UL50 of PrV codes for a dUTPase which copurifies with nuclei of infected cells. PrV UL50- replicated with an only slightly reduced efficiency in epithelial cells in culture compared with that of its parental wild-type virus strain. Our results thus demonstrate that UL50 of PrV encodes a protein of 33 kDa with dUTPase activity which copurifies with nuclei of infected cells and is dispensable for replication in cultured epithelial cells.  相似文献   

6.
Glycoproteins M (gM), E (gE), and I (gI) of pseudorabies virus (PrV) are required for efficient formation of mature virions. The simultaneous absence of gM and the gE/gI complex results in severe deficiencies in virion morphogenesis and cell-to-cell spread, leading to drastically decreased virus titers and a small-plaque phenotype (A. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Serial passaging in noncomplementing cells of a virus mutant unable to express gM, gE, and gI resulted in a reversion of the small-plaque phenotype and restoration of infectious virus formation to the level of a gM(-) mutant. Genetic analyses showed that reversion of the phenotype was accompanied by a genomic rearrangement which led to the fusion of a portion of the gE gene encoding the cytoplasmic domain to the 3' end of the glycoprotein D gene, resulting in expression of a chimeric gD-gE protein. Since this indicated that the intracytoplasmic domain of gE was responsible for the observed phenotypic alterations, the UL10 (gM) gene was deleted in a PrV mutant, PrV-107, which specifically lacked the cytoplasmic tail of gE. Regarding one-step growth, plaque size, and virion formation as observed under the electron microscope, the mutant lacking gM and the gE cytoplasmic tail proved to be very similar to the gE/I/M triple mutant. Thus, our data indicate that it is the cytoplasmic tail of gE which is responsible for the observed phenotypic effects in conjunction with deletion of gM. We hypothesize that the cytoplasmic domain of gE specifically interacts with components of the capsid and/or tegument, leading to efficient secondary envelopment of intracytoplasmic capsids.  相似文献   

7.
Homologues of the UL7 gene of herpes simplex virus type 1 are conserved in alpha-, beta-, and gammaherpesviruses. However, little is known about their functions. Using a monospecific rabbit antiserum raised against a bacterial fusion protein, we identified the UL7 gene product of the neurotropic alphaherpesvirus pseudorabies virus (PrV). In Western blot analyses of infected cells and purified PrV particles the serum specifically detected a 29-kDa protein, which matches the calculated mass of the 266-amino-acid translation product of PrV UL7. For functional analysis, UL7 was deleted by mutagenesis of an infectious full-length clone of the PrV genome in Escherichia coli. The obtained recombinant PrV-DeltaUL7F was replication competent in rabbit kidney cells, but maximum virus titers were decreased nearly 10-fold and plaque diameters were reduced by ca. 60% compared to wild-type PrV. Electron microscopy of infected cells revealed that in the absence of UL7, formation and nuclear egress of nucleocapsids were not affected, whereas secondary envelopment of cytoplasmic nucleocapsids appeared to be delayed and release of mature virions was less efficient. The observed replication defects were corrected by repair of the viral UL7 gene or by propagation of PrV-DeltaUL7F in UL7-expressing cells. PrV-DeltaUL7F was moderately attenuated in mice. Compared to wild-type virus, mean survival times were prolonged from 2 to 3 days after intranasal infection. However, neuroinvasion and transneuronal spread of PrV were not abolished in the absence of UL7. Thus, UL7 encodes a virion protein of PrV, which plays a role during virion maturation and egress both in vitro and in vivo.  相似文献   

8.
Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring virus of murid rodents which displays pathobiological characteristics similar to those of other gammaherpesviruses, including Epstein-Barr virus (EBV). However, unlike EBV and many other gammaherpesviruses, MHV-68 replicates in epithelial cells in vitro and infects laboratory strains of mice and therefore provides a good model for the study of gammaherpesviruses. Studies of sequences around the center of the MHV-68 genome identified a gene (designated BPRF1 for BamHI P fragment rightward open reading frame 1) whose putative product had motifs reminiscent of a transmembrane glycoprotein. All other gammaherpesviruses have a glycoprotein in this genomic position, but the BPRF1 gene showed sequence homology with only the EBV membrane antigen gp340/220. Biochemical analysis showed that the product of BPRF1 was a glycoprotein present on the surface of infected cells, and immunoelectron microscopy showed that it was present in the virus particle. In addition, antibodies to the BPRF1 product raised by using a bacterial fusion protein neutralized the virus in the absence of complement. The predominant molecular weights of the protein were 150,000 and 130,000. Pulse-chase analysis and endoglycosidase-H digestion showed that the 130,000-molecular-weight form was a precursor of the 150,000-molecular-weight form, and cell surface labelling showed that the 150,000-molecular-weight form alone was on the cell surface. We therefore named the protein gp150. Since gp150 is the first virion-associated glycoprotein and neutralizing determinant of MHV-68 to be characterized, it provides a valuable tool for the future study of virus-host interactions.  相似文献   

9.
Open reading frame 11 (ORF11) is a conserved gammaherpesvirus gene that remains undefined. We identified the product of murine gammaherpesvirus 68 (MHV-68) ORF11, p43, as a virion component with a predominantly perinuclear distribution in infected cells. MHV-68 lacking p43 grew normally in vitro but showed reduced lytic replication in vivo and a delay in seeding to the spleen. Subsequent latency amplification was normal. Thus, MHV-68 ORF11 encoded a virion component that was important for in vivo lytic replication but dispensable for the establishment of latency.  相似文献   

10.
The glycoprotein complex gII of pseudorabies virus was isolated by immunoprecipitation with the monoclonal antibody M5, which was covalently linked to protein A-Sepharose. After sodium dodecyl sulfate-polyarylamide gel electrophoresis under reducing conditions and blotting onto poly(vinylidene difluoride) membrane, its subunits, gIIa, gIIb, and gIIc, were subjected to N-terminal sequencing. gIIa and gIIb start at position 59 and gIIc starts at position 503 according to the amino acid sequence deduced from the gene, indicating that there is one major protein (gIIa) which is cleaved into the two protein fragments gIIb and gIIc. Protein labeling with 14C-amino acids gave no indication that the three proteins (gIIa, gIIb, and gIIc) of the complex are present in equimolar ratios. It seems that gIIa is only a minor component of the complex, whereas gIIb and gIIc are contained in equimolar amounts.  相似文献   

11.
Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 Us2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 Us2 protein specifically detected a protein with an Mr of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-Mr Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-Mr Us2 polypeptide. Irrespective of its size, the Us2 protein was incorporated into virions. The EHV-1 Us2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 Us2 protein or to a truncated Us2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 Us2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the Us2 protein in the viral envelope and plasma membrane of infected cells, a Us2-negative RacL11 mutant (L11DeltaUs2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a Us2-repaired virus. After infection of BALB/c mice with L11DeltaUs2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 Us2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.  相似文献   

12.
Homologs of the small tegument protein encoded by the UL11 gene of herpes simplex virus type 1 are conserved throughout all herpesvirus subfamilies. However, their function during viral replication has not yet been conclusively shown. Using a monospecific antiserum and an appropriate viral deletion and rescue mutant, we identified and functionally characterized the UL11 protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL11 encodes a protein with an apparent molecular mass of 10 to 13 kDa that is primarily detected at cytoplasmic membranes during viral replication. In the absence of the UL11 protein, viral titers were decreased approximately 10-fold and plaque sizes were reduced by 60% compared to wild-type virus. Intranuclear capsid maturation and nuclear egress resulting in translocation of DNA-containing capsids into the cytoplasm were not detectably affected. However, in the absence of the UL11 protein, intracytoplasmic membranes were distorted. Moreover, in PrV-DeltaUL11-infected cells, capsids accumulated in the cytoplasm and were often found associated with tegument in aggregated structures such as had previously been demonstrated in cells infected with a PrV triple-mutant virus lacking glycoproteins E, I, and M (A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Thus, the PrV UL11 protein, like glycoproteins E, I, and M, appears to be involved in secondary envelopment.  相似文献   

13.
The Us2 gene is conserved among alphaherpesviruses, but its function is not known. We demonstrate here that the pseudorabies virus (PRV) Us2 protein is synthesized early after infection and localizes to cytoplasmic vesicles and to the plasma membrane, despite the lack of a recognizable signal sequence or membrane-spanning domain. Us2 protein is also packaged as part of the tegument of mature virions. The Us2 carboxy-terminal four amino acids comprise a CAAX motif, a well-characterized signal for protein prenylation. Treatment of infected cells with lovastatin, a drug that disrupts protein prenylation, changed the relative electrophoretic mobility of Us2 in sodium dodecyl sulfate-polyacrylamide gels. In addition, lovastatin treatment caused a dramatic relocalization of Us2 to cytoplasmic punctate structures associated with microtubules, which appeared to concentrate over the microtubule organizing center. When the CAAX motif was changed to GAAX and the mutant protein was synthesized from an expression plasmid, it concentrated in punctate cytoplasmic structures reminiscent of Us2 localization in infected cells treated with lovastatin. We suggest that prenylation of PRV Us2 protein is required for proper membrane association. Curiously, the Us2 protein isolated from purified virions does not appear to be prenylated. This is the first report to describe the prenylation of an alphaherpesvirus protein.  相似文献   

14.
Role of a structural glycoprotein of pseudorabies in virus virulence.   总被引:1,自引:14,他引:1       下载免费PDF全文
The virulence of deletion mutants of pseudorabies virus defective in the expression of glycoprotein gI, gp63, or both was tested in 1-day-old chickens and young pigs. In the absence of expression of gI, the virulence of a fully virulent laboratory strain, PrV(Ka), for 1-day-old chickens was reduced approximately fourfold. Inactivation of glycoprotein gp63 appeared also to affect the virulence of PrV(Ka) only slightly, as did inactivation of both gI and gp63. The level of reduction in virulence, however, was considerably more marked in Bartha 43/25aB4, a less virulent virus strain. Inactivation of the expression of gI in Bartha 43/25aB4 reduced virulence for chickens at least 100-fold. The results obtained when the virulence of the mutants for pigs was determined were compatible with those obtained for chickens. These results indicate that gI plays a role in virulence, but that it does so in conjunction with at least one other viral function (a function that is defective in Bartha 43/25aB4).  相似文献   

15.
Avian erythroblastosis virus causes erythroid leukemia and sarcomas in chickens. The viral oncogene responsible for these diseases, erb, is divided into two regions known as erbA and erbB, and recent evidence suggests that it is the erbB gene that is responsible for the transforming activity. From rats bearing avian erythroblastosis virus-induced sarcomas, we have obtained antisera which are specific for the erb gene products. Using such antisera, we have been able to characterize the erbB gene product as a 68,000 molecular weight protein. Pulse-chase and cell-free in vitro translation experiments show that the initial product is a 62,500 dalton protein which is initially modified to a 66,000 dalton protein, and then further modified to a 68,000 dalton form. These modifications could be shown to be associated with glycosylation and phosphorylation. Cell fractionation experiments revealed that the 66,000 and 68,000 dalton proteins were located in cell membrane fractions, and immunofluorescence results showed the erbB gene product to be expressed on the cell surface.  相似文献   

16.
We have developed a means to identify genes associated with particular aspects of virulence. By beginning with an avirulent deletion mutant of rabbitpox virus and systematically reintroducing overlapping segments of the deleted region, we have identified two regions of the viral genome associated with increased virulence in mice. Evaluation of illness has been aided by the exploitation of weight loss as an indicator of pathogenesis. One of the regions identified by this method contains several open reading frames and includes two previously described genes. A third, as yet undescribed, gene within this region potentially encodes a product related to the C5 protein of human complement. The second region of DNA associated with increased virulence is the HindIII M fragment, which contains only one complete open reading frame. Analysis of this previously unreported gene shows coding potential for a polypeptide of 254 amino acids (approximately 25 kDa) which is related to the C4 component of human complement. The elucidation of two new viral genes related to complement components, taken together with the recent report of the biological activity of a poxvirus-encoded complement-binding protein, suggests the importance of interactions of the virus with the complement system during a normal infection.  相似文献   

17.
Role of glycoprotein gIII of pseudorabies virus in virulence.   总被引:14,自引:13,他引:1  
Deletion mutants of pseudorabies virus unable to express glycoprotein gIII, gI, or gp63 or double and triple mutants defective in these glycoproteins were constructed, and their virulence for day-old chickens inoculated intracerebrally was determined. Mutants of wild-type pseudorabies virus defective in glycoprotein gIII, gI, or gp63 were only slightly less virulent (at most, fivefold) for chickens than was the wild-type virus. However, mutants defective in both gIII and gI or gIII and gp63 were avirulent for chickens, despite their ability to grow in cell culture in vitro to about the same extent as mutants defective in gIII alone (which were virulent). These results show that gIII plays a role in virulence and does so in conjunction with gI or gp63. The effect of gIII on virulence was also shown when the resident gIII gene of variants of the Bartha vaccine strain (which codes for gIIIB) was replaced with a gIII gene derived from a virulent wild-type strain (which codes for gIIIKa); gIIIKa significantly enhanced the virulence of a variant of the Bartha strain to which partial virulence had been previously restored by marker rescue. Our results show that viral functions that play a role in the virulence of the virus (as measured by intracerebral inoculation of chickens) may act synergistically to affect the expression of virulence and that the ability of the virus to grow in cell culture is not necessarily correlated with virulence.  相似文献   

18.
Pseudorabies virus (PRV) glycoprotein gX accumulates in the medium of infected cells. In an attempt to study the function of gX, two viruses were constructed that lacked a functional gX gene. One virus, PRV delta GX1, was derived by insertion of the herpes simplex virus thymidine kinase gene into the gX-coding region. The other virus, PRV delta GXTK-, was derived by subsequent deletion of the inserted herpes simplex virus thymidine kinase gene. Both viruses replicated in cell cultures but produced no gX. Furthermore, PRV delta GX1 was capable of killing mice with a 50% lethal dose of less than 100 PFU.  相似文献   

19.
Herpes simplex virus glycoprotein D (gD) is a major component of the virion envelope and infected cell membranes and is essential for virus entry into cells. We have recently shown that gD interacts with a limited number of cell surface receptors which are required for virus penetration into cells. To define domains of gD which are required for aspects of virus replication including receptor binding, deletion mutations of 5 to 14 amino acids were constructed by using oligonucleotide-directed mutagenesis. Plasmids containing mutant genes for gD were assayed for the ability to rescue a recombinant virus, F-gD beta, in which beta-galactosidase sequences replace gD-coding sequences. Effects on global folding and posttranslational processing of the molecules were assessed by using a panel of monoclonal antibodies which recognize both continuous and discontinuous epitopes. A region near the amino terminus (residues 7 to 21) of gD which is recognized by monoclonal antibodies able to neutralize herpes simplex virus in the absence of complement was not essential for function. In addition, virtually all of the cytoplasmic domain of gD and an extracellular domain close to the membrane were dispensable. In contrast, deletion mutations in the central region of the molecule, save for one exception, led to alterations in global folding of the molecule and maturation of the protein was inhibited.  相似文献   

20.
The proteolytic enzyme, thermolysin, degraded the external segment of the membrane glycoprotein of intact vesicular stomatitis (VS) virions but left behind a small nonglycosylated fragment, presumably embedded in the virion membrane. Other proteases generated membrane-associated glycoprotein fragments differing somewhat in molecular weight. The thermolysin-resistant, virion-associated fragment, which can be selectively solubilized by either Triton X-100 or chloroform/methanol, has a molecular weight of 5,200. Amino acid analysis of the glycoprotein fragment reveals a preponderance of hydrophobic amino acids (64% of the residues); the amino-terminal amino acid is alanine as determined by dansylation. Cyanogen bromide digestion of the tail fragment generated two peptides, confirming the presence of one methionine residue per thermolysin-resistant glycoprotein fragment. The secondary structure of this glycoprotein tail peptide is maintained by at least one disulfide bridge. Thermolysin treatment is isolated VS viral glycoprotein in the presence of Triton X-100 also generated a hydrophobic peptide fragment which is very similar to the virion-associated glycoprotein fragment. The amino acid terminus of intact glycoprotein was also found to be alanine as was its dansylated Triton-micellar fragment that resisted thermolytic degradation; this finding suggests that the amino-terminal end of the VS viral glycoprotein is embedded in the virion membrane. These results suggest that the VS viral glycoprotein is an amphipathic molecule, the hydrophilic portion of which contains all the carbohydrate and a lipophilic tail segment which forms lipid or detergent micelles, thus rendering it resistant to proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号